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Abstract 
Over the last few decades, the massification of quantitative evaluations of science and their institutionalisation in 
several countries has led many researchers to aim at publishing as much as possible. This paper assesses the 
potential adverse effects of this behaviour by analysing the relationship between individual researchers’ 
productivity and their proportion of highly cited papers. In other words, does the share of an author’s top 1% 
most cited papers increase, decrease or remain stable, as her number of total papers increase? Using a large 
dataset of disambiguated researchers (N= 25,994,021) over the 1980-2012 period, this paper shows that the 
higher the number of papers a researcher publishes, the more likely they are amongst the most cited in their 
domain. This relationship was stronger for older cohorts of researchers, while decreasing returns to scale were 
observed in some domains for more recent cohorts. On the whole, these results suggest that at the macro-level, 
the culture of publishing as many papers as possible did not yield to adverse effects in terms of impact, 
especially for older researchers. For such researchers, who have had a long period of time to accumulate 
scientific capital, there can never be too many papers. 

Conference Topic 
Science Policy and Research Assessment 

Introduction 
In the second half of the 20th Century, but even more so over the last few decades, 
evaluations have become widespread in various spheres of society (Dalher-Larsen, 2011). 
Although scientific research has long been exempt from external evaluations thanks to 
Vannevar Bush and post WWII non-interventionist science policy, it has always been 
assessed internally through peer review. These means of evaluating research and researchers 
have, however, slowly changed since the 1980s, when researchers and administrators became 
aware of the roles that bibliometric analyses could play in such evaluations. Quantitative 
publication and citation analyses gained even more importance in the 2000s (Cameron, 2005), 
when tools for assessing individual researchers’ output and impact became widespread. While 
in some cases, these methods have been developed to complement peer review in the 
allocation of research funding—such as the BOF-key in Flanders (Belgium) (Debackere & 
Glänzel, 2004), the Research Assessment Exercise/Framework in the UK—in other settings, 
these quantitative evaluations of research have become the main mean through which research 
is assessed and funded (Sörlin, 2007). Various publication-based and citation-based funding 
models can be found in Australia, Norway, Denmark, Sweden and Finland—and translates as 
the currency through which academic exchanges of tenure, promotion and salary raises are 
made (e.g. Fuyono & Cyranoski, 2006).  
While there has always been subliminal bibliometrics performed through peer evaluation—as 
reviewers were skimming through reviewees’ CVs through the process—the massification of 
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evaluations and their institutionalisation led many researchers and institutions to put large 
emphasis on the number of papers they published. This has led to adverse effects 
(Binswanger, 2015; Frey & Osterloh, 2006; Haustein and Larivière, 2014; Weingart, 2005). 
Indeed, like any social group, researchers are prone to change their behaviour once the rules 
of the games become explicit or what is expected from them; phenomenon that could be 
referred to as the Hawthorne effect (Gillespie, 1993), or to Goodhart (1975) or Campbell’s 
laws (1979). As most evaluations and rankings are first based on numbers of published 
papers, this has created incentives for researchers to author as many papers as possible. In 
Australia (Butler, 2004), where publications counts were used without differentiating between 
publication venue or citations received, researchers have been found to increase their numbers 
of publications in journals with high acceptance rates and lower impact. Along these lines, the 
h-index, which together with the Impact Factor, is likely the most popular bibliometric 
indicator in the scientific community, is largely determined by numbers of papers published 
than on citations (Waltman & van Eck, 2012). 
Within this context, researchers have adopted many publication strategies. While some 
researchers focus on publishing few, high-quality papers—e.g. ‘selective’ (Costas & Bordons, 
2007) or ‘perfectionists’ (Cole & Cole, 1973)—others publish as many papers as possible, 
without not all of them necessarily being of high quality—e.g. ‘prolific scientists’ (Cole & 
Cole, 1973) or ‘big producers’ (Costas & Bordons, 2008)). However, little is known on the 
publication strategy that yields the highest results in terms of impact. In order to better 
understand the relationship between productivity and impact, this paper compares, for a large 
dataset of disambiguated researchers (N= 25,994,021), their total number of papers with the 
proportion of these papers that made it to the top 1% most cited of their field. Thus, this paper 
aims at answering the following key question: Does an authors’ share of top papers start to 
decrease with a certain number of papers published? Or is it stable, as production and impact 
are two distinct dimensions of scientific activity. In other words, how many is too many? 
What is the probability for an author to publish top cited papers relate to the number of papers 
published? A good analogy for this is archery: if an archer throws one arrow, what is the 
probability that it hits the center of the target? Does an increase in the number of arrows 
thrown leads to an increase in the proportion of arrows hitting the center of the target? 
Two opposite hypotheses could be made. The first one would be that authors with just 
‘average’ production—rather than low or high production— are the ones more likely to 
publish top cited papers, as these authors, perhaps, focus more on the ‘quality’ of their output 
than just on quantity (i.e. selective scholars). The second hypothesis would be that, it is the 
authors with very high number of papers who, on average, publish the highest proportion of 
top cited papers. This hypothesis would be on agreement with the theory of Merton’s 
cumulative advantages (Merton, 1968), and supported by empirical work in the sociology of 
science (Cole & Cole, 1973). Similarly, in a Bourdieusian framework, the main goal of a 
researcher is to increase its rank in the scientific hierarchy and gain more scientific capital 
(Bourdieu, 2004). If publishing a high number of scientific papers and being abundantly cited 
are the ways through which researchers can reach this goal, then they will adapt their 
behaviour to reach these evaluation criteria.  
This focus on publishing as many papers as possible—often referred to as ‘salami slicing’—
has been long discussed (e.g. Abraham, 2000; Jefferson, 1998). However, only a few authors 
have analysed the effect of ‘salami slicing’ on papers’ citations. For instance, Bornmann and 
Daniel (2007) have shown, for a small sample of PhD research projects in biomedicine 
(N=96), that an increase in the number of papers associated with a project lead to an increase 
in the total citation counts of papers associated with the projects. However, they do not show 
whether the impact of each paper taken individually increases with the number of papers 
published. Similar to this study, Hanssen and Jørgensen (2015) analysed the effect of 
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‘experience’ on papers’ citations; experience being defined as the author’s previous number 
of publications. Drawing a sample of papers in transportation research (N=779) they show 
that experience is a statistically significant determinant of individual papers’ citations, 
although this increase becomes marginal once a certain threshold is met in terms of previous 
papers published.  

Methods 

This paper uses Thomson Reuters’ Web of Science (WoS) for the period 1980-2012. Only 
journal articles are included. Given that the units analysed in this paper are individual 
researchers, we used the disambiguation algorithm developed by Caron & van Eck (2014) to 
identify the papers of individual researchers. On the whole, the algorithm managed to 
attribute papers to 25,994,021 individuals, which were divided into seven cohorts based on 
the year of their first publication (Table 1).  

Table 1. Number of disambiguated researchers per cohort 

Year of  
first publication 

Number of 
researchers 

<=1985 3,574,667 

1986-1990 2,733,002 

1991-1995 3,282,421 

1996-2000 3,810,652 

2001-2005 4,310,886 

2006-2011 6,930,289 

>=2012 1,352,104 

 

As we want to assess researchers’ contribution to research that has the highest impact, we 
isolated for each discipline the top 1% most cited papers published each year (normalized by 
WoS subject categories). Citations are counted until the end of 2013, and exclude self-
citations. The broad disciplines used are those of the 2013 Leiden ranking which are based on 
the assignment of WoS Subject Categories to five main domains (CWTS, 2013). Figures in 
the paper presents classes of numbers of papers in which there are at least 100 researchers.  

Results 
Figure 1 presents, for the oldest cohort studied—researchers who have published their first 
paper before 1985—the relationship between the number of papers throughout their career 
and the proportion of those papers that made it to the top 1% most cited. For any specific 
number of papers, the expected value of top 1% papers is, as one might expect, 1%. 
Researchers for all five domains have one thing in common: authors with very few papers are, 
on average, much less likely to publish high shares of top 1% most cited papers. For 
Biomedical and health sciences and for Social sciences and humanities we observe a 
continuous increase in authors’ proportion of top papers as their overall number of papers 
increases. For Life and earth sciences the share of papers does increase with the number of 
papers, until about 10 papers where they starts to oscillate, although in general an increasing 
pattern is still observed, especially after 40 papers. Perhaps the most deviant pattern is found 
in Mathematics and computer science where for just for the very low levels of production 
there is an increase in the share of highly cited publications, but this share decreases between 
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4 and 20 papers. It then starts to increase again for higher numbers of papers, despite 
important fluctuations. Natural sciences and engineering follow a similar pattern, with a 
decrease in the share of top papers between 6 and 30 papers, followed, in this case, by a clear 
increase until very high levels of productivity. 
 

 
Figure 1. Proportion of top 1% most cited papers (y axis), as a function of the number of papers 

published (x axis), for the cohort of researchers who have published their first paper before 
1985, by domain. Only classes of numbers of papers with 100 researchers or more are shown. 

When researchers who have published their first paper between 2006 and 2011 are 
considered, different pattern are observed (Figure 2). For Biomedical and health sciences 
there is an increase in the share of highly cited publications up to around 15 publications, 
when some important fluctuations—or certain decreasing returns to scale—start to appear. A 
similar pattern is observed for the Life and earth sciences with the variability starting from 
levels of production of around 10 publications although, in this case, a decrease is clearly 
observed. For the other domains the pattern tends to be clearly increasing, although 
oscillations are also observed for the higher levels of production, which could also be seen as 
decreasing returns to scale. For the other three domains, there is clearly an increase in the 
share of top papers as the number of papers increases. However, we also observe for these 
three fields a decrease at very high levels of productivity. 
An important characteristic of this cohort is that it got socialized to research recently—when 
the evaluation culture was more present—which might explain why they might be more prone 
to try to publish as much as possible. However, the drop in the share of top papers observed in 
each domain—although at different levels of productivity—suggests that these academically-
younger scholars struggle to keep impact high once a certain threshold is met. This might be 
due to the fact that these scholars have not yet secured permanent or tenure positions and, 
thus, might feel that they cannot be as selective as older scholars who might choose their 
collaborators more easily.  
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Figure 2. Proportion of top 1% most cited papers, as a function of the number of papers 

published, for the cohort of researchers who have published their first paper between 2006 and 
2011, by domain. Only classes of numbers of papers with 100 researchers or more are shown. 

Discussion and Conclusion 
Previous research has shown that, in many contexts, the focus on indicators in research 
evaluation has had adverse effects, especially in terms of papers published (e.g. Binswanger, 
2015). This paper aimed to provide an original analysis of one of these adverse effects, which 
is to aim to publish as much as possible. Our results have shown that, especially for older 
researchers, the higher the number of papers published throughout their careers, the higher the 
share of these papers ends up being amongst the top cited papers of their fields. This effect 
was higher for Biomedical and health sciences and for Social sciences and humanities, but in 
all fields the most active group of researcher was also having a higher share of top cited 
papers. A general exception to this trend was found in academically-younger researchers 
working in the field of Life and earth sciences, where higher scientific output was associated 
with lower impact than low-to-mid scientific output. Decreasing returns to scale were also 
more common for more junior researchers than senior ones.  
These results conform to the Mertonian theory of cumulative advantages (Merton, 1968): the 
higher the number of papers an author contributes to, the more he or she gets known and, 
hence, is likely to attract citations. In Bourdieusian terms, the more an author publishes and 
accumulates citations in a domain, the more this capital will yield additional papers and 
citations. The relationship could also be in the other direction, as highly cited authors might 
have more opportunities to contribute to papers, given the scientific capital they have 
accumulated. Still, the results show that top cited authors do not only contribute on average to 
more papers, but also to more highly cited papers. On the whole, these results suggest that, at 
the macro-level, the culture of publishing as many papers as possible did not yield to adverse 
effects in terms of impact, especially for senior researchers. For such researchers, who have 
had a long period of time to accumulate scientific capital, there can never be too many papers.  
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