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Abstract 
A possible solution to the problem of aggregating heterogeneous fields in the all-sciences case 
relies on the normalization of the raw citations received by all publications. In this paper, we 
study an alternative solution that does not require any citation normalization. Provided one 
uses size- and scale-independent indicators, the citation impact of any research unit can be 
calculated as the average (weighted by the publication output) of the citation impact that the 
unit achieves in all fields. The two alternatives are confronted when the research output of the 
500 universities in the 2013 edition of the CWTS Leiden Ranking is evaluated using two 
citation impact indicators with very different properties. We use a large Web of Science 
dataset consisting of 3.6 million articles published in the 2005-2008 period, and a 
classification system distinguishing between 5,119 clusters. The main two findings are as 
follows. Firstly, differences in production and citation practices between the 3,332 clusters 
with more than 250 publications account for 22.5% of the overall citation inequality. After the 
standard field-normalization procedure where cluster mean citations are used as normalization 
factors, this figure is reduced to 4.3%. Secondly, the differences between the university 
rankings according to the two solutions for the all-sciences aggregation problem are of a small 
order of magnitude for both citation impact indicators. 

Conference Topic 
Indicators; Citation and co-citation analysis 

Introduction 
As is well known, the comparison of the citation impact of research units is plagued with 
obstacles of all sorts. For our purposes in this paper, it is useful to distinguish between the 
following three basic difficulties. (i) How can we compare the citation distributions of 
research units of different sizes even if they work in the same homogeneous scientific field? 
For example, how can we compare the output of the large Economics department at Harvard 
University with the output of the relatively small Economics department at Johns Hopkins? 
The next two difficulties have to do with the heterogeneity of scientific fields: the well-known 
differences in production and citation practices makes it impossible to directly compare the 
raw citations received by articles belonging to different fields. Given a classification system, 
that is, a rule for assigning any set of articles to a number of scientific fields, field 
heterogeneity presents the following classic hindrances in the evaluation of research units’ 
performance. (ii) How can we compare the citation impact of two research units working in 
different fields? For example, how can we compare the citation impact of MIT in Organic 
Chemistry with the citation impact of Oxford University in Statistics and Probability? Finally, 
(iii) how can we compare the citation impact of two research units taking into account their 
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output in all fields? For example, how can we compare the citation impact of MIT and Oxford 
University in what we call the all-sciences case? 
As is well known, the solution to the first two problems requires size- and scale-independent 
citation impact indicators. We will refer to indicators with these two properties as admissible 
indicators. Given an admissible indicator, in this paper we are concerned with the two types 
of solutions that the third problem admits. Firstly, the problem can be solved in two steps. 
One first uses some sort of normalization procedure to make the citations of articles in all 
fields at least approximately comparable. Then, one applies the citation indicator to each 
unit’s normalized citation distribution. Secondly, consider the Top 10% indicator used in the 
construction of the influential Leiden and SCImago rankings. In the Leiden Ranking this 
indicator is defined as “The proportion of publications of a university that, compared with 
other similar publications, belong to the top 10% most frequently cited…Publications are 
considered similar if they were published in the same field and the same publication and if 
they have the same document type” (Waltman et al., 2012a). A similar definition is applied in 
the SCImago ranking (Bornmann et al., 2012) Note that this way of computing this particular 
indicator in the all-sciences case does not require any kind of prior citation normalization. For 
our purposes, it is useful to view this procedure as the average (weighted by the publication 
output) of the unit’s Top 10% performance in each field. We note that this important 
precedent can be extended to any admissible indicator. Thus, given a classification system 
and an admissible citation indicator, we can compute the citation impact of a research unit in 
the all-sciences case as the appropriate weighted average of the unit’s citation impact in each 
field. Independently of the conceptual interest of this proposal, we must compare the 
consequences of adopting it versus the possibility of following a normalization procedure.  
Intuitively, the better the performance of the normalization procedure in eliminating the 
comparability difficulties across fields, the smaller will be the differences between the two 
approaches. Consider, for example, what we call the standard field-normalization procedure 
in which the normalized citations of articles in any field are equal to the articles’ original raw 
citations divided by the field mean citation. Under the universality condition, that is, if field 
citation distributions were identical except for a scale factor, then the standard field-
normalization procedure would completely eliminate all comparability difficulties. However, 
the universality condition, once claimed to be the case (Radicchi et al., 2008), is not usually 
satisfied in practice: even appropriately normalized, field citation distributions are seen to be 
significantly different from a statistical point of view (Albarrán et al., 2011a; and Waltman et 
al., 2012a). Therefore, at best, normalization procedures provide an approximate solution to 
the original comparability problem. 
Using a measuring framework introduced in Crespo et al. (2013), recent research has 
established that different normalization procedures perform quite well in eliminating most of 
the effect in overall citation inequality that can be attributed to differences in production and 
citation practices between fields. This is the case for large Web of Science (WoS hereafter) 
datasets, classification systems at different aggregation levels, and different citation windows 
(Crespo et al., 2013, 2014; Li et al., 2013; Waltman & Van Eck, 2013; Ruiz-Castillo, 2014). 
The reason for the good performance of target (or cited-side) normalization procedures is that 
field citation distributions, although not universal, are extremely similar (Glänzel, 2007; 
Radicchi et al., 2008; Albarrán & Ruiz-Castillo, 2011; Albarrán et al., 2012; Waltman et al., 
2012a; Radicci & Castellano, 2012; Li et al., 2013). It should be noted that this research on 
target normalization procedures uses WoS classification systems distinguishing at most 
between 235 sub-fields. 
In principle, given the good performance of normalization procedures, we expect that the 
differences between the two approaches would be of a small order of magnitude. 
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Nevertheless, this is an empirical question that has never been investigated before. To 
confront this question, in this paper we conduct the following exercise.  

• Ruiz-Castillo & Waltman (2015) apply the publication-level algorithmic methodology 
introduced by Waltman and Van Eck (2012) to a WoS hereafter dataset consisting of 
9.4 million publications from the 2003-2012 period. This is done along a sequence of 
twelve independent classification systems in each of which the same set of 
publications is assigned to an increasing number of clusters. In this paper, we use the 
classification system recommended in Ruiz-Castillo and Waltman (2015), consisting 
of 5,119 clusters, of which 4,161 are referred to as significant clusters because they 
have more than 100 publications over this period. For the evaluation of research units’ 
citation impact, we focus on the 3.6 million publications in the 2005-2008 period, and 
the citations they receive during a five-year citation window for each year in that 
period. It should be noted that, using the size- and scale-independent technique known 
as Characteristic Scores and Scales, Ruiz-Castillo and Waltman (2015) show that, as 
in previous research, significant clusters are highly skewed and similarly distributed. 

• Our research units are the 500 universities in the 2013 edition of the CWTS Leiden 
Ranking (Waltman et al., 2012b). We analyze the approximately 2.4 million articles –
about 67% of the total– for which at least one author belongs to one of these 
universities. We use a fractional counting approach to solve the problem –present in 
all classification systems– of the assignment of responsibility for publications with 
several co-authors working in different institutions. The total number of articles 
corresponding to the 500 universities is approximately 1.9 million articles –about 50% 
of the total.  

• We evaluate the citation impact of each university using two size- and scale-
independent indicators. Firstly, we use the Top 10% indicator, already mentioned. 
Secondly, one characteristic of this indicator is that it is not monotonic in the sense 
that it is invariant to any additional citation that a high-impact article might receive. 
Consequently, we believe that it is interesting to use a second indicator possessing this 
property. In particular, we select a member of the Foster, Greer, and Thorbecke (FGT 
hereafter) family, introduced in Albarrán et al. (2011b). We apply this indicator to the 
set of high-impact articles mentioned before. As will be seen below, the fact that both 
of our indicators are additively decomposable facilitates the comparability of the two 
solutions to the all-sciences aggregation problem. 

• Using Crespo et al.’s (2013) measurement framework, Li et al. (2013) indicate that the 
best alternative among a wide set of target normalization procedures is the two-
parameter system developed in Radicci and Castellano (2012). However, recent results 
indicate that the standard, one-parameter field-normalization procedure exhibits a 
good performance in reducing the effects on overall citation inequality attributed to 
differences in production and citation practices between fields (Radicchi et al., 2008; 
Crespo et al., 2013, 2014; Li et al., 2013; and Ruiz-Castillo, 2014). Consequently, in 
this paper we adopt this procedure in the usual solution to the all-sciences aggregation 
problem.  

• We present two types of results. Firstly, we assess the performance of the standard 
normalization procedure in facilitating the comparability of the citations received by 
articles belonging to different clusters. Secondly, we assess the consequences of 
adopting the two solutions to the all-sciences aggregation problem by comparing the 
corresponding university rankings according to the two citation impact indicators.  

296



	  
	  

The rest of the paper is organized into three sections. Section II presents the citation impact 
indicators, as well as the two solutions to the all-sciences aggregation problem. Section III 
describes the data, and includes the empirical results, while Section IV concludes. 

The aggregation of heterogeneous scientific fields in the all-sciences case 

Notation and citation indicators 
It is convenient to introduce some notation. Given a set of articles S, and J scientific fields 
indexed by j = 1,…, J, a classification system is an assignment of articles in S to the J fields. 
Let I be the number of research units, indexed by i = 1,…, I. In this Section, the assignment of 
articles in S to the I research units is taken as given. Let cij = {cijk} be the citation distribution 
of unit i in field j, where cijk is the number of citations received by the k-th article, and let cj be 
the citation distribution of field j, that is, the union of all research units’ citation distributions 
in that field: cj = ∪i {cij}. Finally, let C = ∪i ∪j {cij} be the overall citation distribution, or the 
citation distribution in the all-sciences case. For later reference, let Nij be the number of 
articles in distribution cij, let Ni = Sj Nij be the total number of articles published by unit i, let 
Nj = Si Nij be the total number of articles in field j, and let N = Si Sj Nij be the total number of 
articles in the all-sciences case. 
A citation impact indicator is a function F defined in the set of all citation distributions, 
where F(c) is the citation impact of distribution c. Let cr be the r-th replica of distribution c. 
An indicator F is said to be size-independent if, for any citation distribution c, F(cr) = F(c) for 
all r.  An indicator F is said to be scale-independent if for any λ > 0, and any citation 
distribution c, F(λc) = F(c). An indicator F is said to be additively decomposable if for any 
partition of a citation distribution c into G sub-groups, indexed by g = 1,..., G, the citation 
impact of distribution c can be expressed as follows: 
 

F(c) = Sg (Mg/M)F(cg), 
 

where Mg is the number of publications in sub-group g, and M = Σg M is the number of 
publications in distribution c. 
Consider the following two difficulties for comparing the citation impact of any pair of 
research units: the two units may be of different sizes, and if they work in different fields, 
then their raw citations are not directly comparable. As it is well known, these two difficulties 
can be overcome using a size- and scale-independent indicator. The following two indicators 
are good examples of size- and scale-independent indicators that, in addition, are additively 
decomposable. 
1. Let Xj be the set of the 10% most cited articles in citation distribution cj, and let xij be the 
sub-set of articles in Xj corresponding to unit i, so that Xj = ∪i{xij} with xij non-empty for 
some i. If nij is the number of articles in xij, then the Top 10% indicator for unit i in field j, Tij, 
is defined as 
 
     Tij = nij/Nij.      (1) 
 
Of course, for field j as a whole, if nj = Σi nij is the number of articles in Xj, then Tj = nj/Nj = 
0.10. 
2. Let zj be the Critical Citation Line –CCL hereafter– for citation distribution cj, and denote 
the articles in cj with citations equal to or greater than zj as high-impact articles. For any high 
impact article with citations cil, define the CCL normalized high-impact gap as (cil - zj)/zj. 
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Consider the family of FGT indicators introduced in Albarrán et al. (2011b) as functions of 
normalized high-impact gaps. The second member of this family, Aij, is defined as 
 
     Aij = (1/Nij)[Sl(cil - zj)/zj],    (2) 
 
where the sum is over the high-impact articles in citation distribution cj that belong to unit i. 
We refer to this indicator as the Average of high-impact gaps for unit i in field j. For the entire 
field j as a whole, the average of high-impact gaps is defined as 
 

Aj = (1/Nj)[Sk (ck - zj)/zj], 
 
where the sum is over the high-impact articles in citation distribution cj.  
To facilitate the comparison with Tij, in the sequel we will always fix zj as the number of 
citations of the article in the 90th percentile of citation distribution cj. In that case, the set of 
high-impact articles coincides with the set of the 10% most cited articles in citation 
distribution cj. The two main differences between the two indicators are the following. Firstly, 
one or more citations received by a high-impact article increases Aij but does not change Tij. In 
other words, Aij is monotonic but Tij is not. Secondly, Tij is more robust to extreme 
observations than Aij.  

The solution to the all-sciences aggregation problem using the standard field-normalization procedure 
For any i, let ci = (ci1,…, cij,…, ciJ) be the raw citation distribution of unit i in the all-sciences 
case. Differences in production and citation practices across fields make impossible the direct 
comparison of the raw citations received by articles in different fields. In order to achieve 
some comparability, one possibility is to use some normalization procedure. For any article k 
in citation distribution cij, the normalized number of citations c*ijk according to the standard 
field-normalization procedure is defined as 
 

c*ijk = cijk/µj. 
 

For any i, let c*i = ∪j ∪k {c*ijk} = (c*i1,…, c*ij,…, c*iJ) be the normalized citation distribution 
of unit i in the all-sciences case. Since normalized citations are now comparable, it makes 
sense to apply any indicator to citation distribution c*i. For any i, let F*i = F(c*i) be the 
citation impact of distribution c*i according to the indicator F. For any pair of research units u 
and v in the all-sciences case, the citation impact values F*u and F*v are now comparable, and 
can be used to rank the two units in question. 
Note that, since c*i for i = 1,…, I forms a partition of C* and F is assumed to be additively 
decomposable, we can write 
 

F* = F(C*) = Si (Ni/N)F*i. 
 

Thus, if we rank universities by the ratio F*i/F*, i = 1,…, I, then the value one can serve as a 
benchmark for evaluating the research units in the usual way. For later reference, since c*ij for 
j = 1,…, J forms a partition of c*i, for each i we can write 
 
     F*i = F(c*i) = Sj (Nij/Ni)F*ij,    (3) 
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where F*ij = F(c*ij) for all j, that is, F*ij is simply the citation impact of citation distribution 
c*ij according to F. 

A solution to the all-sciences aggregation problem without field-normalization 
 For any i and any j, denote by Fij = F(cij) the citation impact of distribution cij according to F. 
A convenient measure of citation impact for unit i in the all-sciences case, Fi, can be defined 
as the weighted average of the values Fij achieved in all fields, with weights equal to the 
relative importance of each field in the total production of unit i: 
 
     Fi = Sj (Nij/Ni)Fij     (4) 
 
The comparison of expressions (4) and (5) illustrate the differences between the two solutions 
to the all-sciences aggregation problem when the evaluation of the units’ citation impact is 
made with additively decomposable indicators. Finally, it is convenient to compute the 
weighted average of these quantities as follows: 
 

F = Si (Ni/N)Fi. 
 
Thus, as before, if we rank universities by the ratio Fi/F, i = 1,…, I, then the value one can 
serve as a benchmark for evaluating the research units in the usual way. In practice, we have 
information concerning some but not all research units. Therefore, we compute F as the 
following weighted average: F = Sj (Nj/N)Fj, where Fj = F(cj). 

The aim of the paper 
The main aim of this paper is the comparison between the rankings of research units obtained 
with and without the standard field-normalization procedure, (F*1, …, F*I) and (F1, …, FI), 
respectively.  
To understand the way the results will be presented, we need to review the connection 
between the performance of the normalization procedure and the relationship between the 
solutions to the all-sciences aggregation problem. For that purpose, we need to introduce 
some more notation. For any j, let xj be the set of high-impact articles in distribution cj, that is, 
the set of articles in cj with citations equal to or greater than zj, or the set of the 10% most 
cited articles in cj. Let us denote by X = (x1,…, xj,…, xJ) the set of high-impact articles in the 
all-sciences case. On the other hand, let Y be the set of the 10% most cited articles in the 
overall normalized citation distribution C* = ∪j {c*j}. Let yj be the sub-set of articles in Y 
belonging to field j, so that Y = (y1,…, yj,…, yJ). Note that, in practice, the sets yj might be 
empty for some j. 
Under the universality condition, that is, if all fields are equally distributed except for a scale 
factor then, at every percentile of field citation distributions, normalized citations will be the 
same for all fields. In other words, the normalization procedure will work perfectly. In 
particular, in this situation we would have zj/µj = z* for all j. Consequently, we would have yj 
= xj for all j, and Y = X. Since citation distributions c*ij and cij have the same number of 
articles and our indicators are a function solely of high-impact articles, we would have F*ij = 
F(c*ij) = Fij = F(cij) for all i and j. In view of equations (4) and (5), we would have F*i = Fi for 
all i. In other words, the rankings (F*1, …, F*I) and (F1, …, FI) will be identical. 
As we know, in practice the universality condition is not satisfied. However, the better the 
performance of the normalization procedure, that is, the closer is the set Y to set X, the more 
similar the rankings (F*1, …, F*I) and (F1, …, FI) are expected to be for any F. Note that this 
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conjecture has to be verified in practice. In any case, the empirical section begins by assessing 
the performance of the normalization procedure. 
On the other hand, independently of the normalization procedure’s performance, we should 
measure the consequences of adopting the two solutions to the all-sciences aggregation 
problem using indicators with different properties. The reason, of course is that whenever Y 
and X differ, that is, when the set of high-impact articles under the two solutions differ, the 
consequences for the university rankings might be of a different order of magnitude 
depending on the citation impact indicator we use. This is the reason why we will study the 
situation using the Top 10% and the Average of high-impact gaps. 

Empirical results 

The data and descriptive statistics 
As indicated in the Introduction, our dataset results from the application of a publication-level 
methodology to 9,446,622 distinct articles published in 2003-2012 (see Ruiz-Castillo & 
Waltman, 2015). Publications in local journals, as well as popular magazines and trade 
journals have been excluded (see Ruiz-Castillo & Waltman, 2015 for details). We work with 
journals in the sciences, the social sciences, and the arts and humanities, although many arts 
and humanities journals are excluded because they are of a local nature. The classification 
system consists of 5,119 clusters, and citation distributions refer to the citations received by 
these articles during a five-year citation window for each year in that period. In this paper, we 
focus on the set of 3,614,447 distinct articles published in 2005-2008. In terms of the notation 
introduced in Section II.1, we have C = ∪j {cj} = (c1,…, cN) with J = 5,119, and N = 
3,614,447. 
The research units are universities. Publications are assigned to universities using the 
fractional counting method that takes into account the address lines appearing in each 
publication. An article is fully assigned to a university only if all addresses mentioned in the 
publication belong to the university in question. If a publication is co-authored by two or 
more universities, then it is assigned fractionally to all of them in proportion to the number of 
address lines. For example, if the address list of an article contains five addresses and two of 
them belong to a particular university, then 0.4 of the article is assigned to this university, and 
only 0.2 of the article is assigned to each of the other three universities. 
We know the total number of address lines of every publication, but we have information 
about the number of address lines of specific institutions only for the 500 LR universities. 
This number is well below I, the total number of research units in the notation introduced in 
Section II.1. There are 2,420,054 distinct articles, or 67% of the total, with at least one 
address line belonging to a LR university. The total number of articles in the LR universities 
according to the fractional counting method is 1,886,106.1, or 52.2% of the total. The 
distribution of this total among the 500 universities is available in Perianes-Rodriguez & 
Ruiz-Castillo, 2014a. 

The performance of the normalization procedure 
We assess the performance of the normalization procedure using the measurement framework 
introduced in Crespo et al. (2013), we first estimate the effect on overall citation inequality 
attributable to differences in production and citation practices between clusters, and then the 
reduction in this effect after applying the standard field-normalization procedure. Given the 
many clusters with very few publications (see Ruiz-Castillo & Waltman, 2015), we apply this 
method to the 3,332 clusters with more than 250 publications. These clusters include 
3,441,666 million publications, or 95.2% of the total.  
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We begin with the partition of, say, each cluster citation distribution into P quantiles, indexed 
by p = 1,.., P. In practice, in this paper we use the partition into percentiles, that is, we choose 
P = 100. Assume for a moment that, in any cluster i, we disregard the citation inequality 
within every percentile by assigning to every article in that percentile the mean citation of the 
percentile itself, µi

p. The interpretation of the fact that, for example, µi
p = 2 µj

p is that, on 
average, the citation impact of cluster i is twice as large as the citation impact of cluster j in 
spite of the fact that both quantities represent a common underlying phenomenon, namely, the 
same degree of citation impact in both clusters. In other words, for any π, the distance 
between µp and µj

p is entirely attributable to the difference in the production and citation 
practices that prevail in the two clusters for publications with the same degree of excellence in 
each of them. Thus, the citation inequality between clusters at each percentile, denoted by 
I(p), is entirely attributable to the differences in citation practices between the 3,332 clusters 
holding constant the degree of excellence in all clusters at quantile π. Hence, any weighted 
average of these quantities, denoted by IDCC (Inequality due to Differences in Citation 
impact between Clusters), provides a good measure of the total impact on overall citation 
inequality that can be attributed to such differences. Let C’ be the union of the clusters 
citation distributions, C’ = ∪ {cj} for j = 1,…, 3,332. We use the ratio 
 
     IDCC/I(C’)      (6) 
 
to assess the relative effect on overall citation inequality, I(C’), attributed to the differences in 
citation practices between clusters (for details, see Crespo et al., 2013). 
 
Finally, we are interested in estimating how important scale differences between cluster 
citation distributions are in accounting for the effect measured by expression (6). For that 
purpose, we use the relative change in the IDPC term, that is, the ratio 
 
     [IDCC – IDCC*]/IDCC,    (7) 
 
where IDCC* is the term that measures the effect on overall citation inequality attributed to 
the differences in cluster distributions after applying the standard field-normalization 
procedure (for details, see again Crespo et al., 2013). The estimates of expressions (6) and (7) 
are as follows: 

Table 1. The effect on overall citation inequality, I(‘C), of the differences in citation impact 
between clusters before and after standard field-normalization, and the impact of normalization 

on this effect. 

 Normalization impact =100 [IDCC – IDCC*/IDCC]  

Before MNCS normalization, 100 [IDCC/I(C’)]  22.5 % - 
After MNCS normalization, 100 [IDCC*/I(C’)]  4.3 % 84.3 % 

 
It can be observed that the effect of the differences in citation practices between such a large 
number of clusters represents 22.5% of overall citation inequality, a figure much larger than 
what has been found in the previous literature for at most 235 sub-fields. Nevertheless, the 
standard field-normalization procedure reduces this effect down to 4.3%, quite an 
achievement. 
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Differences in university rankings under the two solutions to all-sciences aggregation problem 
The university rankings without and with normalization according to the Top 10% indicator, 
Ti and T*i, and according to the Average of high-impact gaps, Ai and A*i can be found in 
Perianes-Rodriguez & Ruiz-Castillo (2014a). We begin with the comparison of university 
rankings according to Ti and T*i. The Pearson correlation coefficient between university 
values is 0.995, while the Spearman correlation coefficient between ranks is 0.992. However, 
high correlations between university values and ranks do not preclude important differences 
for individual universities. In analyzing the consequences of going from Ti to T*i, we must 
take two aspects into account. Firstly, we should analyze the re-rankings that take place in 
such a move. Secondly, we should compare the differences between the university values 
themselves. Fortunately, we have a relevant instance with which to compare our results: the 
differences found in Ruiz-Castillo and Waltman (2015) in going from the university rankings 
according to Ti using the Web of Science classification system with 236 journal subject 
categories, or sub-fields, and the classification system we are using in this paper with 5,119 
clusters.  
As much as 38.4% of universities experience very small re-rankings of less than or equal to 
five positions, while 67 universities, or 13.4% of the total, experience re-rankings greater than 
25 positions. These figures are 20.2% and 39.0% when going from the WoS classification 
system to our dataset. Among the first 100 universities, 61 experience small re-rankings in 
going from Ti to T*i, while only 44 are in this situation in the change between classification 
systems. As far as the cardinal changes is concerned, 78.4% of universities have changes in 
top 10% indicator values smaller than or equal to 0.05 when going from Ti to T*i. This 
percentage is 71% among the first 100 universities. These figures are 50.1% and 60.0% in the 
change between classification systems. For most universities, the differences are more or less 
negligible. Although for some universities more significant differences can be observed, the 
conclusion is clear. The differences observed in university rankings according to the top 10% 
indicator when we adopt the two solutions for solving the all-sciences aggregation problem 
are considerably less than according to the same indicator when we move from the WoS 
classification system to our dataset (Perianes-Rodriguez & Ruiz-Castillo, 2014a). 
The Pearson correlation coefficient between the university rankings according to the average 
of high-impact gaps, Ai and A*i, is 0.596, while the Spearman correlation coefficient between 
ranks is 0.984. However, the low Pearson correlation coefficient is due to the presence of the 
well-known extreme observation of the University of Göttingen (Waltman et al., 2012b; Ruiz-
Castillo & Waltman, 2015). Without this university, this correlation coefficient becomes 
0.986. In any case, as before, high correlations between university values and ranks do not 
preclude important differences for individual universities. The ordinal differences in 
university rankings according to this indicator with and without field-normalization are of a 
similar order of magnitude as those obtained with the top 10% indicator. For example, 33.0% 
of universities experience very small re-rankings of less than or equal to five positions, while 
80 universities, or 16.0% of the total, experience re-rankings greater than 25 positions. 
Among the first 100 universities, only 44 experience small re-rankings in going from Ai to A*i 
(in comparison with 61 when going from Ti to T*i). As far as the cardinal changes is 
concerned, 64.2% of universities have changes in indicator values smaller than or equal to 
0.05 when going from Ai to A*i –a comparable figure with 78.4% when going from Ti to T*I 
(Perianes-Rodriguez & Ruiz-Castillo, 2014a). 
The conclusion is inescapable. In spite of the fact of the limitations of the standard 
normalization procedure in the presence of so many clusters, the differences observed in 
university rankings when we adopt the two solutions for solving the all-sciences aggregation 
problem are of a relatively small order of magnitude regardless of which of then two rather 
different citation impact indicators is used in obtaining the university rankings. 
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Conclusions 
The heterogeneity of the fields distinguished in any classification system poses a severe 
aggregation problem when one is interested in evaluating the citation impact of a set of 
research units in the all-sciences case. In this paper, we have analyzed two possible solutions 
to this problem. The first solution relies on prior normalization of the raw citations received 
by all publications. In particular, we focus on the standard field-normalization procedure in 
which field mean citations are used as normalization factors. The second solution extends the 
approach adopted in the Leiden and SCImago rankings for computing the Top 10% indicator 
in the all-sciences case to any admissible indicator. This solution does not require any prior 
field-normalization: the citation impact of any research unit in the all-sciences case is 
calculated as the appropriately weighted sum of the citation impact that the unit achieves in 
each field. 
Using a large WoS dataset consisting of 3.6 million publications in the 2005-2008 period and 
an algorithmically constructed publication-level classification system that distinguishes 
between 5,119 clusters, this simple alternative has been confronted with the usual one when 
the citation impact of the 500 LR universities are evaluated using two indicators with very 
different properties: the top 10% indicator, and the average of high-impact gaps. 
The shape of the citation distributions of 4,161 significant clusters with more than 100 
publications in our dataset has been previously shown to be highly skewed and reasonable 
similar (Ruiz-Castillo & Waltman, 2015). Previous results with WoS classification systems 
that distinguishes at most between 235 sub-fields indicate that, when this is the case, the 
standard field-normalization procedure performs well in reducing the overall citation 
inequality attributed to the differences in production and citation practices between fields. In 
this paper we have shown that this is not exactly the case, even when we restrict the attention 
to 3,332 clusters with more than 250 publications. Therefore, a priori it was not obvious what 
to expect when confronting the solutions to the all-sciences aggregation problem with and 
without prior field-normalization. 
Interestingly enough, the differences between the university rankings obtained with both 
solutions is of a relatively small order of magnitude independently of the citation impact 
indicator used in the construction of the university rankings. In particular, these differences 
are considerably smaller than the ones obtained in Ruiz-Castillo and Waltman (2015) for the 
move from the WoS classification system with 236 sub-fields to the one used in this paper 
with 5,119 clusters. 
In principle, it seems preferable to evaluate the citation impact of research units in the all-
sciences case avoiding any kind of prior normalization operation. However, the empirical 
evidence presented in this paper indicates that that the use of the traditional methodology does 
not lead to very different results. This is a convenient conclusion, since there are instances 
when normalization is strongly advisable. For example, when one is interested in studying the 
research units citation distributions in the all-sciences case –as we do in the companion paper 
Perianes-Rodriguez and Ruiz-Castillo (2014b). 
It should be noted that, before being accepted, it would be convenient to replicate the results 
of this paper for other datasets, other classification systems, other types of research units, and 
other ways of assigning responsibility between research units in the case of co-authored 
publications. 
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