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Abstract 
This study discusses the effects of dangling nodes on citation networks through the PageRank algorithm. The 
origins of dangling nodes for citation networks are introduced and three methods are applied to handle dangling 
nodes: retaining all dangling nodes, deleting dangling nodes, and clustering dangling nodes into one node. 
Correlation analyses are used to compare these three methods.  

Introduction 
In the language of network analysis, dangling nodes denote the nodes without outgoing links. 
With the advent of the Web, the concept of dangling nodes became a common topic. It is well 
understood that most web pages link to and are linked by other pages. But it is possible that 
some pages do not contain any valid hyperlinks, which may be broken pages (i.e., those that 
formerly contained hyperlinks but have now become “403/404 Error”) or multimedia data 
types (i.e., PDF, JPG, PS, MOV). The problem of dangling nodes has become more evident 
with the proliferation of search engines. Search engines are reported to have low coverage of 
the entire Web (Lawrence & Giles, 1999; Bar-Ilan, 2002; Vaughan & Thelwall, 2004). 
Consequently, if a page’s linked pages are not crawled by search engines, it would become a 
dangling node. 
For citation networks, each node is a publication and each link is a citation tie. Dangling 
nodes represent publications cited by other publications, but do not cite others. Citing 
behaviors affect the generation of dangling nodes in citation networks, as papers can only cite 
papers published earlier. Disciplinarity and databases coverage can also result in dangling 
nodes in citation networks.  
PageRank is chosen as the underlying algorithm to measure the impacts of dangling nodes on 
citation networks. PageRank is not new to citation analysis. More than 30 years ago, Pinski 
and Narin (1976) proposed the concept of “influence weights”, which served as the archetype 
for PageRank. For citation networks, PageRank algorithm gives higher weight to highly cited 
articles or articles cited by other highly cited articles.  
Previous studies on the Web manipulated dangling nodes for two major reasons. First, 
dangling nodes exits in large scale and thus it is computational intensive to calculate 
PageRank for large network. Second, dangling nodes receive PageRank scores but did not 
distribute them and thus skewed the scores of non-dangling nodes. In the past decade, several 
methods have been proposed to handle the negative effect of dangling nodes on the Web. 
Citation networks, however, usually are comparatively small in size (from thousands to 
millions), and required computing time and space is therefore less demanding. Specifically, 
using power method, the cost of computing PageRank is O(n), and thus it is possible to store 
the citation matrix using a linear amount of memory and the vector-matrix multiplication has 
linear complexity (Franceschet, 2010). Based on this, dangling nodes on citation network 
need to be manipulated only if they negatively affect PageRank scores of non-dangling nodes. 
The null and research hypotheses are proposed as follows. 

• H0: dangling nodes do not affect PageRank scores of non-dangling nodes on 
citation networks; 

• H1: dangling nodes have effects on PageRank scores of non-dangling nodes on 
citation networks. 
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Two methods (deleting and lumping) are used to manipulate dangling nodes, and test the 
hypotheses through comparing the PageRank scores of non-dangling nodes on the 
manipulated network and original network. 
The article is organized as follows: Section 2 conducts a literature review of relevant methods 
used to handle dangling nodes; Section 3 introduces the data set and methods; Section 4 
applies PageRank algorithm to the data set and discusses the effects of dangling nodes on 
citation networks; and Section 5 draws the conclusion. 

Related studies 
In the original PageRank paper, Page et al. (1999) suggested removing dangling nodes from 
the graph, and calculating the PageRank on the remaining graph. Kamvar et al. (2003) 
suggested removing the dangling nodes and then re-inserting them “for the last iterations”. 
This approach was also suggested by Brin et al. (1998). Eiron, McCurley, and Tomlin (2004), 
however, discussed the caveats of removing dangling nodes, which skews the results on the 
non-dangling nodes, since the outdegrees of non-dangling nodes are adjusted when dangling 
nodes are deleted. They also argued that the process of removing dangling nodes may itself 
produce new dangling nodes. Langville and Meyer (2006) also held that simply removing the 
dangling nodes biases the PageRank vector. 
Another approach proposed by Lee, Golub, and Zenios (2003) clustered dangling nodes into 
one node. The algorithm they proposed exploits the “lumpability” of the Markov chain and 
proceeds in two stages. At the first stage, they computed the limiting distribution of a chain 
where the dangling nodes are combined into one super node; at the second stage, they 
computed the limiting distribution of a chain where only the non-dangling nodes are 
combined. Ipsen and Selee (2007) took the same approach, where all dangling nodes are 
lumped into a single node. They also showed that the PageRank of the non-dangling nodes 
can be computed separately, with the convergence rate as that of the power method applied to 
the full matrix. Other related methods include Eiron, McCurley, and Tomlin’s (2004) notion 
of penalty pages. They proposed four methods to “penalize” the pages linking to dangling 
pages by reducing their PageRank scores.  
For paper citation networks, Chen, Xie, Maslov, and Render (2007) applied PageRank to 
assess the relative importance of publications in the Physical Review family. They found that 
PageRank values and citations for each publication are positively correlated. Ma, Guan, and 
Zhao (2008) applied PageRank in evaluating research influence of countries in the fields of 
Biochemistry and Molecular Biology. They found that citation and PageRank are highly 
correlated, with correlation coefficient reaching to 0.9 at the 0.01 level. Another advance that 
utilizes the concept of PageRank is the SCImago Journal and Country Rank (SCImago, 2007). 
These studies applied PageRank to citation networks but did not consider the effects of 
dangling nodes. For this study, three methods are applied to handle the dangling nodes in 
citation networks: (1) keeping all dangling nodes; (2) deleting dangling nodes; and (3) 
clustering dangling nodes into one node. 

Methodology 

Data set 
The field of informetrics is chosen, query recommended by Bar-Ilan (2008) is utilized and 
improved to search all relevant records in Web of Science (retrieval time: Jan 31st, 2009; time 
span: default all years): TS=(informetric* OR bibliometric* OR webometric* OR 
scientometric* OR citation analy* OR cocitation analy* OR co-citation analy* OR link 
analy* OR hyperlink analy* OR self citation* OR self-citation* OR impact factor* OR 
science polic* OR research polic* OR S&T indicator* OR citation map* OR citation visuali* 



Yan and Ding 

  863 

OR information visual* OR h-index OR h index OR Hirsch index OR patent analy* OR Zipf 
OR Bradford OR Lotka OR collaboration network* OR coauthorship network* OR co-
authorship network*) OR SO=(Scientometrics OR Journal of Informetrics). Subject category 
INFORMATION SCIENCE & LIBRARY SCIENCE was used to narrow down the search 
results. The original data set covers 4,997 papers30 (articles and review articles) with 92,021 
cited references.  

Dangling nodes in citation networks 
When constructing a citation network, relevant bibliographical data of certain field(s) are 
downloaded. This procedure resembles crawling on the Web, where more dangling nodes 
emerge with the expansion of crawled web pages. Unless building a citation network covering 
the entire body of literature ever accumulated, one can only construct citation networks for 
certain field(s), domain(s), time(s), etc. And when constructing such networks, some of the 
links will inevitably be excluded and thus produce dangling nodes. 

 
Figure 1. A small citation network with dangling nodes 

Another feature of citation networks is that they strictly follow temporal order: only recent 
publications can cite previous ones. Figure 1 shows that publications at each time point can 
only cite those published before them, and thus the oldest publications in the data set would 
become dangling nodes. Also, types of literature, disciplinarity, and database coverage can all 
result in dangling nodes.  Different types of literature, for example, such as citations from 
                                                 
30 The record difference from “Discovering author impact: A PageRank perspective” is that 99 records that have 
no cited references are deleted in the current data set, which is resulted from the index issues of some records 
in the Web of Science database. 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books, newspapers, or web pages, are usually not covered in academic databases, and 
therefore have no outbound links and will become dangling nodes. For this study, the focus is 
on informetrics research articles, where their cited articles may cover different disciplines, but 
these cited articles will not be covered in the original data set, and would end up as dangling 
nodes. Regarding different databases, some cited articles may not be collected by the database 
and will become dangling nodes accordingly.   

Methods 
This section explains the method used in this study. A five-paper graph example is referenced 
and presented it in a matrix (step 1); then three approaches are used to handle dangling nodes 
(step 2); and the transformed matrices are inputted to PageRank algorithm (step 3). 
Step 1: Representing citation networks in a matrix 
The papers and citations of citation networks can be presented in a directed graph. The nodes 
represent articles and the directed arcs represent citations. Figure 2 is an example of a five-
paper citation network where paper 1 and 2 are dangling nodes. 

 
Figure 2. A five-page graph with dangling nodes 

Let M be an adjacency matrix with the rows and columns corresponding to the directed graph 
of the network. For a weighted matrix, if there is a link from page j to page i, then the matrix 
entry mij has a value 1/Nj, where Nj is the number of connections (right matrix in equation 
(1)). If there is no link from page j to page i, then the matrix entry mij is zero.  

                                (1) 

Step 2: Handling dangling nodes 
A column where all entries are zero is a dangling node. The matrix M is irreducible only if 
there are no dangling nodes, i.e., all columns have norms of value one. One problem with the 
matrix M is that it is not stochastic (each column sums to one), and a Markov chain is defined 
only for stochastic matrices.  
The first method is to retain all dangling nodes and replace each zero column (vector) with a 
dense column, thus transforming M into  (equation (2)). In equation (2), the dangling 
vector is replaced by a uniform vector eT /n (e is the vector of all ones). For general 
application, a dangling vector is usually replaced by vector vT, known as the personalization 
or teleportation vector (Langville & Meyer 2004). The corresponding network is called the 
whole/original network in following paragraphs. 
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                                                   (2) 

The second method is to delete all dangling nodes, as  in equation (3), and replace the 
non-stochastic column to a uniform vector eT /n if necessary. The corresponding network is 
called the reduced network in following paragraphs. 

                                                                          (3) 

The third method is to cluster all dangling nodes into one node, and then this node is replaced 
by a uniform vector eT /n, as  in equation (4). The corresponding network is called the 
lumped network in following paragraphs.  

                                    (4) 

Step 3: Calculating PageRank values for the transformed matrices 
The last step is to input the transformed matrix , , and  to the PageRank 

algorithm:  , where 0 ≤ ≤ 1 (0.85 for this study) and . is 

usually referred to as PageRank matrix. This combination of the stochastic matrix and a 
stochastic perturbation matrix E ensures that  is both stochastic and irreducible (no non-
zero entries). The irreducibility adjustment also ensures that  will converge to the 
stationary vector πT (Langville & Meyer, 2004), called PageRank vector. 

Results and analysis 

Distribution and formation of dangling nodes 
The citation network contains 95,340 nodes (4,997 original downloaded papers and their 
92,021 cited references minus 1,678 overlapping records). In this network, 90,343 cited 
references are not covered in the original downloaded data set, and thus become dangling 
nodes in this citation network. This result is consistent with Langville and Meyer’s (2004) 
finding that in some part of the Web, up to 80% of web pages are dangling nodes.  
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Figure 3. Distribution of number of citations for 90,343 dangling nodes  

Local citation indicates the number of times an article is cited in the citation network, referred 
to as “internal citation” by some scholars (Ma et al., 2008). The distribution of dangling nodes 
shows the power-law feature: the alpha value 737.1 is calculated through frequency 
curve estimation. A free toolkit can facilitate the calculation (Rousseau & Rousseau, 2000). 
Up to 90% of all references are only cited one or two times, indicating that these references 
are not echoed in other informetrics studies. On the other hand, 129 references are cited more 
than 30 times. These publications have high connections with informetrics research.  

Table 1. Top 20 publications based on PageRank 

PageRnk 
Rank 

First 
author 

Title* Journal/Publisher** Year Local 
Citation 

Dangling 
Nodes 

1 Schubert A Relative indicators and 
relational charts for 
comparative assessment of 
publication output and 
citation impact  

Scientometrics 1986 74 FALSE 

2 Braun T Scientometric indicators World Scientific 1985 55 TRUE 

3 Lotka AJ The frequency distribution of 
scientific productivity 

Journal of the 
Washington 
Academy of 
Sciences 

1926 195 TRUE 

4 Garfield E Citation Indexing Wiley & Sons 1979 178 TRUE 

5 Garfield E Citation analysis as a tool in 
journal evaluation  

Science 1972 146 TRUE 

6 Schubert A Scientometric data files  Scientometrics 1989 80 FALSE 

7 Small H Cocitation in scientific 
literature  

JASIS 1973 165 FALSE 

8 Price DJD Networks of scientific papers Science 1965 143 TRUE 

9 Price DJD Little science, big science Columbia 1963 117 TRUE 
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University Press 
10 Bradford 

SC 
Sources of Information on 
Specific Subjects 

Engineering 
(London) 

1934 134 TRUE 

11 Narin F Evaluative bibliometrics Computer Horizons 1976 94 TRUE 
12 Hirsch JE An index to quantify an 

individual's scientific 
research output  

PNAS 2005 94 TRUE 

13 Price DJD General theory of 
bibliometric and other 
cumulative advantage 
processes  

JASIS 1976 113 FALSE 

14 Moed HF The use of bibliometric data 
for the measurement of 
university-research 
performance  

Research Policy  1985 69 TRUE 

15 Small H Structure of scientific 
literatures  

Science Studies 1974 102 TRUE 

16 Martin BR Assessing basic research  Research Policy 1983 82 TRUE 
17 Brookes 

BC 
Bradford’s law and 
bibliography of science  

Nature 1969 71 TRUE 

18 Egghe L Introduction to informetrics Elsevier 1990 79 TRUE 
19 Bradford 

SC 
Documentation Crosby Lockwood 1948 61 TRUE 

20 Beaver DD Studies in scientific 
collaboration  

Scientometrics    1978 57 FALSE 

*Words after “:” and “-” are omitted; 
**PNAS: Proceedings of the National Academy of Sciences; JASIS: Journal of the American Society for Information Science. 

Table 1 shows top 20 publications of the whole network (95,340 nodes) based on PageRank 
scores. Of the top 20 publications, 15 are dangling nodes. Seven dangling nodes are books 
that resemble PDF files on the Web, in that they usually have higher values but cannot cite or 
link to other resources. Some old journal articles are found to be dangling nodes. Examples as 
Lotka’s article titled, “The frequency distribution of scientific productivity” published in 
1926. Although it is a journal article which has references, they are not collected in the 
database due to its age. Some other dangling nodes (e.g., Citation analysis as a tool in journal 
evaluation) are resulted from the selection of data, since the data only cover records in the 
INFORMATION SCIENCE & LIBRARY SCIENCE subject category, and hence journals 
categorized as MULTIDISCIPLINE, MANAGEMENT and so on are unable to be included.  

Citation in three networks vs. PageRank 
In this section, three methods are applied to identify the effects of dangling nodes on citation 
networks by computing PageRank values under d=0.85 for: (1) the whole network; (2) the 
reduced network; and (3) the lumped network.  
For the last two methods, the issue of defining dangling nodes is important, since the deletion 
of dangling nodes would result in new dangling nodes. For the whole network, if all 90,343 
dangling nodes were deleted, 4,997 nodes would be left. For this remaining network, 2,314 
new dangling nodes would emerge. Theoretically, this procedure can progress in this manner 
until no node is left; however, in practice, the real number is a little above zero (37 for this 
network), since some articles are cited in the preprint version by older publications. 
Of the previous studies on deletion of dangling nodes, Page et al. (1999), Kamvar et al. 
(2003), and Brin et al. (1998) did not mention specifically how these nodes were removed. 
Page et al. (1999) and Brin et al. (1998) generalized this procedure as “remove links that point 
to any page with no outgoing links”, and Kamvar et al. (2003) as “exclude dangling nodes 
from the Web graph until the final few iterations”. But their experimental setups and results 
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imply that they only removed the dangling nodes in the original network, not the newly 
generated dangling nodes. Based on this, a similar approach is taken by only deleting the 
original dangling nodes.  
In the whole network, PageRank values for all 95,340 are calculated, and those for the 4,997 
non-dangling nodes are selected. For reduced network, PageRank scores for 4,997 nodes are 
computed after the deletion of 90,343 dangling nodes. In lumped network, 90,343 dangling 
nodes are first clustered into one super node, and then PageRank values are computed for this 
new network containing 4,998 nodes (4,997 non-dangling nodes plus the super node). The 
distribution between PageRank scores and local citation counts is illustrated in Figure 4. 

 
Figure 4. PageRank vs. Local citation counts for non-dangling nodes 

As can be seen in Figure 4, local citation and PageRank are highly correlated, with 
Spearman’s rank correlation coefficient above 0.9 (rs= 0.9911, 0.9895, and 0.9931 
respectively). Bollen et al. (2006) interpreted the number of citations as “popularity”, 
measuring the bounds of impacts and PageRank as “prestige”, which considers the quality of 
impacts. They also found a high correlation between citation and PageRank of ISI journals.  

Table 2. Top 20 articles based on PageRank (non-dangling nodes) 

Whole network Reduced network Lumped network 
Schubert A, 1986, 
SCIENTOMETRICS, V9, P281 

Schubert A, 1986, SCIENTOMETRICS, 
V9, P281 

Schubert A, 1986, 
SCIENTOMETRICS, V9, P281 

Schubert A, 1989, 
SCIENTOMETRICS, V16, P3 

Brookes BC, 1968, J DOC, V24, P247 Almind TC, 1997, J DOC, V53, P404 

Small H, 1973, J AM SOC INFORM 
SCI, V24, P265 

Garfield E, 1979, SCIENTOMETRICS, V1, 
P359 

Brookes BC, 1968, J DOC, V24, P247 

Price DJD, 1976, J AM SOC INFORM 
SCI, V27, P292 

Schubert A, 1983, SCIENTOMETRICS, 
V5, P59 

Schubert A, 1989, 
SCIENTOMETRICS, V16, P3 

Beaver DD, 1978, 
SCIENTOMETRICS, V1, P65 

Small H, 1980, SCIENTOMETRICS, V2, 
P277 

Garfield E, 1979, 
SCIENTOMETRICS, V1, P359 

Moed HF, 1995, SCIENTOMETRICS, 
V33, P381 

Almind TC, 1997, J DOC, V53, P404 Ingwersen P, 1998, J DOC, V54, P236 

Schubert A, 1990, 
SCIENTOMETRICS, V19, P3 

Yablonsky AI, 1980, SCIENTOMETRICS, 
V2, P3 

Smith LC, 1981, LIBR TRENDS, V30, 
P83 

Almind TC, 1997, J DOC, V53, P404 Small H, 1985, SCIENTOMETRICS, V7, 
P391 

Yablonsky AI, 1980, 
SCIENTOMETRICS, V2, P3 

Ingwersen P, 1998, J DOC, V54, P236 Schubert A, 1989, SCIENTOMETRICS, 
V16, P3 

Schubert A, 1983, 
SCIENTOMETRICS, V5, P59 
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Schubert A, 1983, 
SCIENTOMETRICS, V5, P59 

Beaver DD, 1979, SCIENTOMETRICS, 
V1, P231 

Small H, 1985, SCIENTOMETRICS, 
V7, P391 

Braun T, 1988, SCIENTOMETRICS, 
V14, P3 

Smith LC, 1981, LIBR TRENDS, V30, P83 Small H, 1980, SCIENTOMETRICS, 
V2, P277 

Vanraan AFJ, 1996, 
SCIENTOMETRICS, V36, P397 

Ingwersen P, 1998, J DOC, V54, P236 Schubert A, 1990, 
SCIENTOMETRICS, V19, P3 

Garfield E, 1979, SCIENTOMETRICS, 
V1, P359 

Rabkin YM, 1979, SCIENTOMETRICS, 
V1, P261 

Small H, 1985, SCIENTOMETRICS, 
V8, P321 

Brookes BC, 1968, J DOC, V24, P247 Haitun SD, 1982, SCIENTOMETRICS, V4, 
P5 

Haitun SD, 1982, 
SCIENTOMETRICS, V4, P5 

Braun T, 1987, SCIENTOMETRICS, 
V11, P9 

Brookes BC, 1977, J DOC, V33, P180 Brookes BC, 1977, J DOC, V33, P180 

Braun T, 1987, SCIENTOMETRICS, 
V12, P3 

Small H, 1980, J DOC, V36, P183 Beaver DD, 1979, 
SCIENTOMETRICS, V1, P231 

Small H, 1985, SCIENTOMETRICS, 
V7, P391 

Small H, 1985, SCIENTOMETRICS, V8, 
P321 

Moed HF, 1995, SCIENTOMETRICS, 
V33, P381 

Braun T, 1987, SCIENTOMETRICS, 
V11, P127 

Bradley SJ, 1992, J INFORM SCI, V18, 
P225 

Christensen FH, 1996, 
SCIENTOMETRICS, V37, P39 

Egghe L, 1985, J DOC, V41, P173 Schubert A, 1990, SCIENTOMETRICS, 
V19, P3 

Beaver DD, 1979, 
SCIENTOMETRICS, V1, P133 

Small H, 1985, SCIENTOMETRICS, 
V8, P321 

Christensen FH, 1996, 
SCIENTOMETRICS, V37, P39 

Haitun SD, 1982, 
SCIENTOMETRICS, V4, P89 

Table 2 lists top 20 articles based on PageRank for three networks. When compared to Table 
1, much important literature is not included here, as the exclusion of dangling nodes has 
resulted in significant loss of information, with more than 90% of the records being excluded. 
Ten articles rank top 20 for all three networks, eight rank top 20 for two networks, and 14 
rank top 20 for one network. As for authors, Small H has five articles ranked top 20 for one of 
the three networks, and other authors who have more than one articles ranked top 20 are: 
Schubert A (4 articles), Braun T (4 articles), Beaver DD (3 articles), Brookes BC (2 articles), 
and Haitun SD (2 articles). As for the year of publication, 1 article is published in 1960s, 8 in 
1970s, 16 in 1980s, 7 in 1990s, and no article in 2000s. As for journals, Scientometrics is 
dominant, reaching 22 out of 32 unique articles in Table 2, followed by Journal of 
Documentation (6 articles) and Journal of American Society for Information Science (2 
articles).  

Comparing PageRank in three networks 
Figure 5 shows the scatter plot for 4,997 nodes in three networks. The Spearman’s rank 
correlation coefficient is 0.9872 for whole network vs. reduced network, and 0.9900 for 
whole network vs. lumped network, indicating that most non-dangling nodes have 
approximately same rank status for reduced network and lumped network, and dangling nodes 
do not have major impact on the non-dangling nodes.  

 
Figure 5. Correlation for three networks 
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Table 3. Number of dangling nodes for each level 

Level Number of 
dangling nodes 

Accumulated 
number of 

dangling nodes 

Percentile Accumulated 
percentile 

1--10 7 7 70.00% 70.00% 
11--50 28 35 70.00% 70.00% 
51--100 33 68 66.00% 68.00% 
101-500 275 343 68.75% 68.60% 
501--1000 390 733 78.00% 73.30% 
1001-5000 3495 4228 87.38% 84.56% 
5001--10000 4761 8989 95.22% 89.89% 
10001--50000 39526 48515 98.82% 97.03% 
50001--95340 41828 90343 92.25% 94.76% 

Table 3 lists the number of dangling nodes for each PageRank ranking level. For each level, 
dangling nodes take a high percentile, ranging from 66% to 99%. Notably, for top 100 
publications, 68% of them are dangling nodes. The results differ from the dangling nodes on 
the Web, where most dangling nodes are in the periphery of the Web and have low ranks 
(Langville & Meyer, 2004). The deleting or lumping dangling nodes on the Web, therefore, is 
appropriate for that environment. On the contrary, dangling nodes on citation networks are 
pervasive at each level. Deleting or lumping dangling nodes on citation networks will thus 
result in significant loss of data, especially for the top ranked publications (see Table 2). In 
addition, as can be seen in Figure 6, the rank variance between original and reduced network 
and rank variance between original and lumped network for most articles is zero, which 
means that the non-dangling articles in the network have almost identical rank status. The 
deleting and lumping dangling nodes in fact only have a minor impact on non-dangling nodes 
in the citation network, and thus do not change their overall ranking. Based on this, we argue 
that the methods of deleting and lumping dangling nodes are not appropriate for citation 
networks, as PageRank can yield comparatively similar results using the original network.   
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Figure 6. Rank variances 

Conclusion 
This article evaluates the effects of dangling nodes in citation networks through the PageRank 
algorithm. Hyperlinks on the Web can be updated frequently, whereas the publication aging 
problem is crucial for the formation of dangling nodes in citation networks: articles can only 
cite those published before them. Consequently, the oldest publications in a network 
unavoidably become dangling nodes. Moreover, since citations are linked, the selection of 
certain citations but not others will produce dangling nodes. Another major type of dangling 
node is caused by the coverage of databases.  
Three methods are applied to handle dangling nodes in the citation network: retaining 
dangling nodes, deleting dangling nodes, and clustering dangling nodes into one node. 
Citation counts and PageRank values are correlated, with Spearman’s rank correlation 
coefficients above 0.9. Through comparing the three methods, deleting and lumping methods 
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do not radically change the PageRank scores of non-dangling nodes, suggesting that dangling 
nodes on citation networks only have local impact on non-dangling nodes. Moreover, this 
study also compares the ranking variances between the original and reduced networks and 
rank variance between the original and lumped networks, and finds similar results: most non-
dangling articles have identical rank for the original network and manipulated networks. 
Different from dangling nodes in the Web, highly cited dangling nodes in citation networks 
are important references, and therefore deleting or clustering them would result in loss of 
information and consequently prevent us from gaining an overview of the field. Based on 
these findings, the null hypothesis is thus retained: the non-manipulated network is preferable 
for handling dangling nodes, since PageRank can produce similar result without losing any 
information. 
As the different rankings in Table 2 demonstrate, the rankings based on PageRank are 
sensitive to the data set selection, the network construction procedure, and the analyzing 
methods. Hence, studies that utilize the PageRank concept need to verify the sensitivity of the 
algorithm.  
The limitation of this study is that only one data set is used, and thus the conclusion cannot be 
generalized to other scholarly data set. As the strict temporal order of citations affects citation 
networks, the older publications will have an advantage in accumulating citations. In future 
studies, it may be necessary to add temporal dimensions to citations and evaluate them based 
on different publication year. 
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