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Abstract 
Link prediction is concerned with the question to what extent it is possible to predict which links will exist in a 
future snapshot of an evolving network. Several measures, called predictors, have been proposed to achieve 
more accurate predictions. However, these are typically based on unipartite networks, even though many of the 
examined networks have an underlying bipartite structure. In this contribution, we examine whether predictions 
based on the original bipartite networks are able to improve prediction accuracy. 
We present bipartite versions of several neighbor-based predictors, the Katz predictor and the Rooted PageRank 
predictor, and discuss their strong and weak points. Both the unipartite and bipartite predictors are then tested on 
two co-authorship networks. The results show that some bipartite predictors form a considerable improvement to 
their unipartite counterparts. We also note remarkable differences between the two case studies and discuss 
possible reasons for this disparity. 

Introduction 
Social network analysis (SNA) is the research field that tries to describe and explain social 
structures by means of network theory. SNA researchers have devised many techniques and 
measures, which have since been ‘imported’ into other fields of research. During the last 
decade, bibliometricians and informetricians have shown a growing interest in applying SNA 
techniques (e.g., Liu et al., 2005; Otte & Rousseau, 2002; Yan & Ding, 2009). This is quite 
natural; it is well-known that many interactions studied in informetrics can be represented as 
networks, such as citation networks, collaboration networks, web link networks etc. 
Mathematically, a network G = (V, E) consists of a set of vertices or nodes V and a set of 
edges or links E ⊆ V × V, which connect nodes. We will refer to connected nodes as 
neighbors. A node’s neighborhood is the set of all nodes connected to it. In a weighted 
network, each link has a weight, indicating the link strength.  
Contrary to random networks (Erdős & Renyi, 1959), social and informetric networks evolve 
according to certain regularities. The phenomenon of preferential attachment (Barabási & 
Albert, 1999) is also well-known: new nodes are more likely to link to existing nodes with 
many neighbors than to existing ones with few neighbors. Morris (2005) presents an 
interesting growth model of papers and their references, which is based on similar principles.  
In other words, there are features present in a network which make certain links more likely 
than others. 

Link prediction 
Liben-Nowell and Kleinberg (2003) were among the first to examine the following question: 
to what extent is it possible to predict which links will appear in the future? More specifically, 
given a snapshot of an evolving social network, how can one predict which new links will 
appear in some future snapshot of the same network? Liben-Nowell and Kleinberg (2003, 
2007) refer to the question as the link-prediction problem. They call the current snapshot the 
training network and the future snapshot – if it is known – the test network. 
Normally, one tries to capture the probability of a link between two given nodes using some 
measure or indicator, such as the number of neighbors they have in common. Such measures 
are referred to as predictors. Formally, a predictor p is a function p: V × V → R, that maps a 
pair of nodes to a real-valued likelihood score β, which is usually rescaled to the interval 
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[0, 1]. The score β expresses the likelihood that a link between the two nodes will exist in the 
predicted network. This leads to a set of node pairs with a corresponding likelihood score. If 
one ranks these in decreasing order of β and cuts off the list at some threshold, one obtains a 
set of ‘most likely’ links, which together comprise the predicted network. The predictor thus 
indirectly specifies what the predicted network looks like. Since the predictor only assigns a 
score to node pairs from the training network, the problem of new nodes (and links to/from 
them) is outside the scope of link prediction. 
In link prediction research, the test network is known; hence, one can compare the training 
network with the test network. Predictor performance can then be measured using measures 
such as precision and recall, the AUC measure (Bradley, 1997) etc. 
Link prediction forms the basis of several applications, some of which have already been 
explored in the literature. A principal application is recommendation, which hinges on finding 
related but unlinked items. Prediction of links in an incomplete network leads the way to 
another application, viz. detection of missing information. It is a well-known problem that the 
data in citation databases like Web of Science is incomplete and sometimes erroneous, 
affecting the results of scientometric indicators (Jacsó, 2009). Link prediction can hence be 
used as a tool in detecting missing (or spurious) links in the database. 
At a theoretical level, the main promise of link prediction is as a practical way of testing and 
evaluating network formation and evolution models. Predictors normally derive from an 
explicit or implicit hypothesis of how and why links arise in a network. The performance of a 
predictor therefore also may help to test the validity of the underlying hypothesis. 

Bipartite networks 
Bipartite networks are defined as follows. A bipartite network G = (T, B, E) consists of two 
disjoint sets of nodes T and B, and E ⊆ T × B is the set of links. We call T the set of top nodes 
and B the set of bottom nodes. Bipartite networks are different from ‘regular’ (unipartite) 
networks in that links can only exist between top nodes and bottom nodes. Mathematically, 
they can be considered a subclass of networks in general (taking V = T ∪ B). In practice, it is 
usually the case that top nodes and bottom nodes represent different kinds of entities (e.g., 
articles and keywords, authors and journals, authors and publications…). 
Every bipartite network has a corresponding weighted unipartite network. Given the bipartite 
network G = (T, B, E), its corresponding unipartite (weighted) network is G′= (B, E′, w). If 
N(a) denotes the neighborhood of node a, then E′ is the set of all bottom node pairs {u, v}(u, v 
∈ B) for which N(u) ∩ N(v) ≠ ∅. The weighting function w : B × B → N then is 

w(u, v) = |N(u) ∩ N(v)| (1) 

For every bipartite network, there is exactly one corresponding unipartite network using this 
procedure (but note that switching top and bottom nodes yields another with a different node 
set). This is not true the other way around: a weighted unipartite network may correspond to 
many bipartite networks. Consider the example in Figure 11, – the weighted unipartite 
network on the right corresponds to the two bipartite networks on the left. 
In many aspects of informetrics, the distinction between asymmetrical occurrence matrices 
and symmetrical co-occurrence matrices is crucial (Leydesdorff & Vaughan, 2006; Schneider 
& Borlund, 2007). The relation between a bipartite network and its corresponding unipartite 
network is, in essence, the same as that between an occurrence matrix and its corresponding 
co-occurrence matrix. Indeed, the adjacency matrix of a bipartite network is of the form 
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It consists of four submatrices, two of which are square matrices that only contain zeros 
(represented here as [0]). It is clear that all information is actually contained in the submatrix 
X (or its transpose), which can be interpreted as an occurrence matrix. The adjacency matrix 
of the corresponding unipartite network is the corresponding co-occurrence matrix. This 
implies that there is a direct relation between bipartite and unipartite networks on the one 
hand and occurrence and co-occurrence matrices on the other. 
 

 
Figure 11. A unipartite network corresponds to many bipartite networks 

 
An important kind of informetric network is the collaboration network, where nodes represent 
researchers, connected by collaboration links. Most often, the collaboration network is 
‘approximated’ by a co-authorship network (e.g., Liu et al., 2005), – we will do the same and 
treat both terms as synonyms. Collaboration networks are very popular as case studies in link 
prediction research. There exist several good reasons for this: the results are of interest to a 
wide variety of researchers, it is relatively easy to gather enough data, and the networks are 
undirected. This is an advantage, since directed networks complicate things; in a directed 
network, one would also have to predict the link direction. Like many networks in 
informetrics, the collaboration network is in fact a ‘derived’ network, in that it corresponds to 
an underlying bipartite network. In this case, the bipartite network consist of publications as 
top nodes, authors as bottom nodes, and authorships as links. This bipartite network is 
unweighted. 
Let us assume that Figure 11 represents a co-authorship network on the right and two 
corresponding author–publication networks on the left. In the upper bipartite network, a and c 
have co-authored two publications, one of which also has b as a co-author. In the lower 
bipartite network, a and c again have co-authored two publications, but this time, there are no 
co-authors. This may indicate that a and c have worked more closely together in the latter 
case. This is especially clear when one compares papers written by tens or even hundreds of 
authors – ‘mega-authorship’ (Kretschmer & Rousseau, 2001) or ‘hyperauthorship’ (Cronin, 
2001) – with those written by two or three authors. It seems extremely unlikely that the degree 
of close collaboration in the former case is as high as in the latter case. 
Since the bipartite network contains more information, it seems plausible that link prediction 
on the basis of a bipartite network can be more accurate. Indeed, typically link prediction tries 
to gauge how ‘close’ two potential collaborators are, – the extra information contained in the 
bipartite network may help to make better assessments in this regard. The research question 
we consider here is twofold: (a) can one make more accurate predictions on the basis of the 
bipartite network compared to the corresponding unipartite network, and (b) which indicators 
are best suited to exploit the specific features of the bipartite network? Note that we will only 
consider the case where the training network is a bipartite author–publication network and the 
test network and predicted network are unipartite author collaboration networks. 
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Predictors 
We first present an overview of some well-known predictors used for unipartite networks 
(Clauset, Moore & Newman, 2008; Guns, 2009; Huang, Li & Chen, 2005; Liben-Nowell & 
Kleinberg, 2007). This overview is not intended to be exhaustive, but it does present members 
of the main ‘families’ of predictors. Some predictors with known bad performance, like the 
Preferential Attachment predictor (Guns, 2009; Liben-Nowell & Kleinberg, 2007), are also 
excluded. Subsequently, we discuss how these predictors may be applied to bipartite 
networks. 
Social networks tend to have high clustering, in other words, two nodes that are connected to 
a third node have a high probability of being connected themselves. The Common Neighbors 
predictor is defined as the size of the intersection of their neighborhoods: 

p(u, v) =  (2) 

Common Neighbors is however sensitive to size; if u and v have many neighbors, they are 
automatically more likely to have more neighbors in common. Therefore, several variants of 
Common Neighbors have been devised. Many of these variants have been thoroughly studied 
in information science, especially in Information Retrieval and science mapping. A well-
known example is the Cosine measure (Salton & McGill, 1983): 

Cos = p(u, v) =  (3) 

Other variants include the Jaccard index, the Overlap and Dice’s measure. We note that these 
variants have both a set-theoretic and a vector-based interpretation (Egghe & Michel, 2002), 
both of which can be used for link prediction. 
Some variants of Common Neighbors have originated and been studied mainly outside 
information science, such as the Adamic/Adar measure (Adamic & Adar, 2003): 

p(u, v) =  (4)
 

or the Resource Allocation index (Zhou, Lü & Zhang, 2009): 

p(u, v) =  (5)
 

Although their ranking is not the same, they are quite similar in form and ‘function’: rare 
(low-degree) neighbors of u and v have more weight than high-degree ones. 
So far, we have not looked beyond the neighbors of two given nodes. A step further is taking 
into account the path(s) between them. Let d(u, v) denote the length of the shortest path from 
u to v. The Graph Distance predictor is then defined as: 

p(u, v) =  (6)
 

A more complex measure that takes all paths up to a given length (not just shortest paths) 
between two nodes into account was proposed by Katz (1953). Although originally intended 
as an indicator of centrality, Katz’s method can also be used to obtain a measure of 
relatedness between two nodes and hence as a predictor: 

 (7) 
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where λ (0 < λ < 1) is a parameter that expresses the “probability of effectiveness of a single 
link” and  is the element corresponding to nodes vi and vj in the k-th power of the 
adjacency matrix, i.e. the number of paths with length k from vi to vj. 
Finally, we mention the Rooted PageRank predictor, a variation of PageRank (Brin & Page, 
1998; Langville & Meyer, 2005). The PageRank score of a node can be intuitively understood 
as the probability that a random walker visits a given node at a specific point in time. At each 
step, the random walker either moves to a neighbor of the current node (probability α) or 
‘teleports’ to a random node in the network (probability 1 – α). PageRank is the largest 
eigenvector of the PageRank matrix GPR: 

 (8) 

where G is the stochastic matrix for the adjacency matrix of the network and E is a 
matrix, with each element equal to 1 / n. If e is a column vector of ones, then E = eeT / n. 

Rooted PageRank simply uses the inherent possibility of personalization of PageRank (Brin & 
Page, 1998) and can also be explained from the perspective of a random walker. The random 
walker starts at a fixed root node vk. At each step, it either moves to a neighbor of the current 
node (probability α) or teleports back to vk (probability 1 – α). Rooted PageRank is then the 
largest eigenvector of the Rooted PageRank matrix GRPR: 

 (9) 

where 

 

Typically, the node most related to vi is vi itself, followed by its neighbors, and so on. 
How can these predictors be translated to bipartite networks? For the neighbor-based 
predictors, this is fairly straightforward. If u and v are bottom nodes (authors), then their 
neighbors are by definition top nodes (articles). In other words, Common Neighbors, Cosine 
and variants can be used for bipartite networks as well. However, their interpretation is 
completely different. Most importantly, all of them simply yield the training network as a 
result (if the threshold is low enough). In other word, applying equations (2) to (5) to a 
bipartite network never yields a genuine prediction (appearance or disappearance of a link), 
only an estimate of the likelihood a co-authorship link in the training network will sustain in 
the test network. This does not mean that these predictors are the same, since their ranking is 
different. The Common Neighbors predictor ranks in decreasing order of number of joint 
publications. Cosine is similar, but normalizes with respect to the total number of publications 
of the authors. The Adamic/Adar and Resource Allocation predictors favor joint publications 
with no or few other co-authors. 
It would be possible to apply the Graph Distance predictor (6) to a bipartite network with 
bottom nodes u and v, but the resultant ranking would be the same as for the unipartite 
network: the shortest path length for any bottom node pair is simply doubled in the bipartite 
case. For this reason, we will not consider Graph Distance in the analysis. 
Contrary to Graph Distance, the unipartite and bipartite Katz predictor can result in different 
rankings. Compared to the neighbor-based predictors, Katz has the advantage that it is not 
restricted to neighboring nodes (or neighbors of neighbors). However, the bipartite variant has 
a theoretical downside, which can be explained through the example in Figure 2. Assume that 
the top nodes represent publications and the bottom nodes represent authors. In the left case, 
authors a and b have both collaborated with a single third author, whereas in the right case, 
they were co-authors in a larger team. Nevertheless, because the left case contains one path of 
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length 4 from a to b and the right one contains 4 paths of length 4, the Katz predictor would 
rank the right case higher. 
 

 
Figure 2. Hypothetical example: two cases of author–publication networks 

 
Finally, Rooted PageRank has the same advantage as Katz when compared to neighbor-based 
predictors: it is not restricted to predicting co-authors that u and v have in common, let alone 
that it is – like bipartite Common Neighbors and its many variants – restricted to authors that 
already collaborate in the training network. At each step, the random walker switches between 
top and bottom nodes (disregarding teleportation). If the random walker is at a given paper, 
each of the paper’s authors has an equal chance of being the next hop. This implies that 
Rooted PageRank values are lower in cases where papers have more authors: Rooted 
PageRank would rank the right case of Figure 2 lower than the left one. As explained earlier, 
we consider this an attractive property. 

Data and methodology 
We have tested the predictors described in the previous section on two case studies of 
collaboration. The first case consists of co-authored publications at a single institution 
(University of Antwerp, Belgium) across all departments during the period 2001–2006. This 
case study is based on the University of Antwerp’s own publication database, which is 
virtually exhaustive for the time period considered. The training network is based on the 
period 2001–2003 and the test network is based on 2004–2006. The second case consists of 
co-authored publications in the field of informetrics during the period 1990–2009. This case 
study is based on data found in Thomson Reuters’ Web of Science. Here, we use 1990–2004 
as the training period and 2005–2009 as the test period. We will refer to the first one as the 
‘UA’ case study and to the second one as the ‘Informetrics’ case study. 
In both cases, we have a bipartite training network (authors–publications) and a unipartite one 
(authors as nodes). The test network is a unipartite network. Table 1 contains basic data about 
both case studies. We restrict the networks to those nodes that are common to both training 
and test network; hence the number of authors in the training networks and the node number 
of the test network is the same. 
 

Table 1. Descriptive statistics of the case studies 

Network  UA Informetrics 
Unipartite training network Number of nodes 1102 171 
 Number of links 3212 178 
 Average clustering coefficient 0.418 0.515 
Test network Number of nodes 1102 171 
 Number of links 3550 188 
 Average clustering coefficient 0.385 0.510 
Bipartite training network Number of authors 1102 171 
 Number of papers 8671 862 
 Number of links 13088 929 
 Average number of papers per 11.877 5.433 
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author 
 Average number of authors per 

paper 
1.509 1.078 

 
Each predictor makes a number of false and correct predictions, resulting in four groups: true 
positives (correct predictions), false positives (predictions which are not in the test network), 
false negatives (unpredicted links in the test network), and true negatives (no link in predicted 
or test network). We use recall and precision to evaluate a predictor’s performance. Recall is 
defined as the number of correct predictions divided by the number of links in the test 
network. Precision is defined as the number of correct predictions divided by the number of 
links in the predicted network. Since each predicted link has a likelihood score, we can 
construct recall–precision charts (with predicted links in decreasing order of likelihood). 
Of course, one can also choose a threshold and simply use the predictions above that 
threshold. In fact, this is probably more realistic: in most cases, one is mainly interested in a 
small group of high-quality predictions, rather than a broad swath of low-quality predictions. 
We therefore also look at the ‘Precision at k’ measure (Manning, Raghavan & Schütze, 2008); 
specifically, we record the precision of the first k = 20 predictions for Informetrics and the 
first k = 60 for UA. We take k larger for UA, because UA as a whole is a much larger data set 
(Table 1). 

Results 
In this section, we discuss the results of applying the unipartite and bipartite predictors, using 
recall–precision charts. Table 2 contains the Precision at k scores for all predictors for both 
case studies. Bipartite predictors in Table 2 are marked with the letters ‘BP’. 
 First, we look at the results for the neighbor-based predictors. Figure 3 contains the recall–
precision charts for (the unipartite and bipartite versions of) the Common Neighbors and 
Cosine predictors. The plots of other neighbor-based predictors like Jaccard and Overlap (not 
shown) are very similar to the Cosine plot. It is interesting to note that in both cases the 
simple Common Neighbors predictor outperforms the more sophisticated Cosine variant. This 
is consistent with the findings in older research (Liben-Nowell & Kleinberg, 2007). This is 
even clearer when considering Precision at k: in both cases, Cosine does not only worse than 
Common Neighbors but is in fact the least precise of all examined predictors (see Table 2). 
Turning to the bipartite predictors, one can see some remarkable differences between both 
case studies. In the UA case study, both bipartite predictors achieve much higher accuracy 
than the unipartite ones (but keep in mind that the bipartite predictors only ‘predict’ links that 
were already present in the training network). Common Neighbors again outperforms Cosine, 
–  at least for the highest ranked predictions, which are the most important. This is reflected in 
a higher Precision at k for Common Neighbors. The Informetrics case study on the other hand 
paints a rather different picture. Here, bipartite Common Neighbors does worse than regular 
Common Neighbors. Moreover, in this case bipartite Cosine clearly outperforms all other 
predictors considered, both in the recall–precision chart (Figure 3) and for Precision at k 
(Table 2). The relatively poor performance of bipartite Common Neighbors is due to the fact 
that in this data set the number of joint papers is not very discriminating, since in virtually all 
cases it is quite low. Indeed, 91% of all author collaborations in the training network consists 
of three or less joint publications (UA: 76.3%), and over all collaborations we find only 9 
different numbers of joint papers in the training network (UA: 35). We observe that in such 
cases, normalization by (for instance) the cosine measure – thereby correcting for the total 
number of publications of the authors and increasing the predictor’s discriminatory value –  
can considerably improve accuracy. This observation has, to the best of our knowledge, not 
been made previously in the literature. 
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Figure 3. Recall–precision of unipartite and bipartite Common Neighbors and Cosine predictors 

(left: UA, right: Informetrics) 

 
Table 2. Precision at k for all predictors (UA: k = 60; Informetrics: k = 20) 

Predictor UA Informetrics 
Common Neighbors 0.952381 0.761905 
Common Neighbors BP 1 0.657895 
Cosine 0.562963 0.625 
Cosine BP 0.918367 0.956522 
Adamic/Adar 0.983607 0.863636 
Adamic/Adar BP 1 0.65 
Resource Allocation 0.9625 0.926829 
Resource Allocation BP 0.99115 0.65 
Katz (λ = 0.001) 1 0.680672 
Katz BP (λ = 0.05) 1 0.648148 
Rooted PageRank (α = 0.85) 0.754098 0.772727 
Rooted PageRank BP (α = 0.85) 0.915094 0.757576 
Rooted PageRank BP (α = 0.2) 0.933333 0.818182 
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Figure 4. Recall–precision of unipartite and bipartite Adamic/Adar and Resource Allocation 

predictors (left: UA, right: Informetrics) 

 
We now turn to the Adamic/Adar and Resource Allocation predictors, in essence a subgroup 
of neighbor-based predictors that gives preference to ‘rare’ common traits (co-authors or 
publications). Their results are shown in Figure 4. For the unipartite predictors we find that 
Resource Allocation has overall slightly better performance than Adamic/Adar, because 
Resource Allocation ‘punishes’ harder for common neighbors with high degree centrality 
(Zhou, Lü & Zhang, 2009). Note, however, that the UA case study reports a somewhat lower 
Precision at k for Resource Allocation than for Adamic/Adar. 
The bipartite variants of Adamic/Adar and Resource Allocation yield virtually identical 
rankings and hence almost identical plots. Again we can see a remarkable difference between 
the two case studies: whereas the bipartite variants perform better on UA, they perform much 
worse on Informetrics. It is no coincidence that these plots strongly resemble the ones for 
bipartite Common Neighbors in Figure 3: just like bipartite Common Neighbors, they suffer 
from the fact that the number of joint papers is not discriminating enough for this case study. 
Accounting for the ‘rarity’ of these papers even results in a slightly worse Precision at k. 
The Katz predictor involves an extra parameter λ. Through experimentation, we found that the 
optimal (i.e., resulting in the most accurate predictions) values for λ are 0.001 in the unipartite 
case and 0.05 in the bipartite case. These optimal values are remarkably similar for both case 
studies. The value for the unipartite case is much lower, essentially giving very low weight to 
paths of length 2 or more (cf. eq. (7)). Since the shortest possible path between two authors in 
the bipartite case has length 2, the optimal value for λ is naturally higher there. 
The results in Figure 5 and Table 2 are based on the optimal values for λ. For both case 
studies, the unipartite and bipartite variants result in fairly similar plots. For UA, both Katz 
variants achieve a perfect Precision at k, whereas the results for Informetrics are relatively 
poor (slightly worse for the bipartite variant). Because the UA case study contains a sizable 
portion of publications with many authors (the largest number of authors for a single 
publication is 69), we expected to find relatively worse performance for bipartite Katz there. 
The results did, however, not confirm this expectation. 
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Figure 5. Recall–precision of unipartite (λ = 0.001) and bipartite (λ = 0.05) Katz predictors (left: 

UA, right: Informetrics) 

 
Finally, we consider the Rooted PageRank predictor. Figure 6 shows the results for Rooted 
PageRank with α = 0.85. In both case studies, there is an obvious advantage to the bipartite 
predictor, although the difference is greater for UA than for Informetrics. Indeed, in the latter 
case we see that the first part of the bipartite Rooted PageRank plot (up to about 0.4 on the 
horizontal axis) is a bit similar to the bipartite Common Neighbors plot in Figure 3: an initial 
sharp decrease and then a steady part around 0.7 precision (although the precision of Rooted 
PageRank is a bit better than Common Neighbors’). This caused us to wonder whether other α 
values would yield better predictions. It turns out that the optimal value for α in the unipartite 
case lies around 0.85, whereas its optimal value in the bipartite case lies around 0.2 (cf. the 
last row of Table 2). 
 

 
Figure 6. Recall–precision of unipartite and bipartite Rooted PageRank predictors (left: UA, 

right: Informetrics) 
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Conclusions 
Networks are central to many aspects of informetric research. It is therefore important to 
understand how and why such networks evolve. Link prediction may help to understand the 
factors that influence link formation or disappearance. 
Many informetric networks are derived from a bipartite network: this is the case for 
collaboration (co-authorship) networks, but also co-citation, bibliographic coupling and co-
word networks. In this paper, we have examined the question whether link prediction on the 
basis of the original bipartite network can improve prediction performance and which 
indicators are best suited for prediction on the basis of a bipartite training network. 
The results indicate that bipartite link prediction can indeed improve prediction performance, 
although much depends on the predictor used. Some predictors, like Rooted PageRank, 
benefit significantly from the bipartite structure. For others, like Katz, there is hardly no 
difference between the unipartite and the bipartite variant.  
Some of the bipartite neighbor-based predictors achieve very good performance, but one 
should keep in mind that they are limited to ‘predicting’ which links from the training 
network are likely to sustain. Contrary to the accepted view, we have found that the Cosine 
predictor can in some cases significantly outperform Common Neighbors. Note that the 
results of bipartite Common Neighbors can be obtained from the unipartite training network, 
whereas the remarkable improvement of bipartite Cosine is only possible on the basis of the 
bipartite network. 
Some predictors achieve very different results, depending on the case study. This is often 
glossed over, but in fact an important point. Indeed, it is perhaps logical that networks with 
different characteristics also call for different predictors, bipartite or otherwise. This is an 
important direction for future research: which predictor is best suited for which kind of 
network? 
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