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Abstract 
Indicators based on non-patent references (NPRs) are increasingly being used for measuring and monitoring 
science-technology relations. But NPRs in patent documents contain noise, as not all of them can be considered 
‘scientific’. In this paper, we introduce the results of a  machine-learning algorithm that allows to identify 
scientific references in an automated way. The obtained outcomes are used to analyze indicators based on non-
patent references, with a focus on the difference between NPR- and SNPR-based indicators. Differences between 
both indicators are significant and dependent on the considered patent system, the applicant country and the 
technological field. These results indicate the relevance of delineating scientific references when developing and 
employing indicators of science-technology relations. Furthermore, the revealed sensitivity of these indicators to 
technological, national and patent system characteristics urges for a contextualized interpretation.  

Introduction 
In today’s knowledge based systems of innovation, indicators of science-technology relations 
are highly relevant for monitoring innovative performance or potential at several levels of 
analysis. Indicators based on non-patent references are very popular in this respect. In spite of 
some discussion about their actual meaning (see Nelson, 2009), scientific references in 
patents are in any case indicative of relatedness or closeness between the developed 
technology and the cited science (Callaert, 2006; Meyer, 2000a; Tijssen et al. 2000; Van Looy 
et al., 2007). The presence of scientific research in the ‘prior art’ description of a patented 
invention should be considered an indicator of the relevance of scientific findings for 
assessing and contextualizing technology development. As such, indicators based on scientific 
references in patents references provide useful additional information on science-technology 
relatedness or vicinity, at least if their presence displays sufficient levels of occurrence 
(Callaert et al., 2006). Combine to this the widespread and consistent availability of reliable 
and comprehensive patent databases, and it is clear that there are many opportunities for 
systematic and objective quantitative analyses of patent-related issues, among which the 
linkage between science and technology as measures by NPRs. At the same time, NPRs in 
patent documents contain ‘noise’. Some efforts have been made in the past to map types of 
non-patent references. Narin and Noma (1985) reported an average of 0.3 non-patent 
references per patent, 48% of which related to journals, 15% to books and 11% to abstracts. 
Van Vianen et al. (1990) found that 55.7% of non-patent references in Dutch patents were 
journal citations, the others were mostly books and abstract services. Harhoff et al. (2003) 
found approximately 40% of non-patent references referring to trade journals, firm 
publications or standard texts in technical fields. Callaert et al. (2006), in a sample of EPO 
and USPTO non-patent references, found that more than half of them were journal articles. 
The remainder include conference proceedings; industry-related documents; and reference 
books / databases. Even though some non-journal reference categories may still be considered 
scientific in a broader sense, it is clear from the above overview that not all non-patent 
references are scientific sources. Therefore, if one is interested in pinpointing those traces of 
prior art that refer to scientific research in a narrow sense: i.e. references to the serial 
scientific journal literature, large scale identification of the scientific character of non-patent 
references becomes highly relevant.  
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In this paper, a method for identification is developed and applied to study the occurrence of 
actual scientific references within the ‘non-patent references’. Next we analyze to what extent 
NPR-based indicators change, depending on whether only scientific versus all non-patent 
references are taken into account. We consider two often-used NPR-based indicators of the 
science relatedness of patents. First, the proportion of patents with at least one scientific non-
patent reference gives an idea of the size of the scientific footprint within technology (from 
now on, we refer to this indicator as ‘size’). Second, the number of cited scientific non-patent 
references per patent – sometimes referred to as the ‘science intensity’ – gives an idea of the 
depth of the scientific footprint (from now on, we refer to this indicator as ‘depth’). Both 
indicators are related, but capture different aspects of science-technology linkage. This 
implies that, although previous studies of ST relations consider mostly the depth component, 
a sound interpretation of the scientific footprint within technology requires that both the size 
and depth indicators are considered.  

Methodology for characterizing non-patent references 
In order to arrive at an algorithm that allows delineating scientific references, a ‘learning set’ 
has been created, consisting of 25.783 non patent references. These references have been 
selected randomly from 7 582 096 NPRS pertaining to all EP0, USPTO and PCT patent 
documents included in the Patstat Database (April 2008 version).  
This sample was classified by a team of researchers (n=5) as either Journal, Proceedings or 
non-scientific (e.g. manuals, patent abstracts,…) We also included a category ‘Maybe’ to 
include inconclusive cases (e.g. N.N. (year)). In total 12.465 NPR’s received the label 
‘Journal; 2.037 were classified as ‘Proceedings’; 10.411 NPR’s are Non-Scientific while 360 
NPR’s can be labeled as doubtful.   
Within a next step, all these references have been parsed, indexed and stemmed in order to 
create a document by term-matrix (consisting of 25.783 rows (references) and 74.127 
columns (unique stemmed terms); cell values equal the frequency of occurrence of each 
document by term combination)14. As in most text mining settings, this matrix is very sparse. 
Contrary to most text-mining applications, no weighting was applied. The main purpose of 
most standard weighing systems (e.g. TF-IDF), is to diminish the weight of the terms that 
occur very often in order to increase the discriminatory power. In this particular case (i.e. 
classification of a reference to be scientific or not) however, words that occur often can be 
very significant. For example, the two most occurring words in the sample index are “et” and 
“al”. Their presence in a reference might be a strong indication of the reference being 
scientific. 
In order to arrive at a robust algorithm, the learning set was partitioned in a random way by 
means of Monte Carlo simulations. Moreover, each time, a test set was created for verification 
purposes (consisting of 30% of the references). This test set was each time excluded when 
developing the classifier (which also implies that classifiers have been developed on smaller 
Document by Term matrices as the test documents (and the unique terms are left out)). This 
results in 10 different - but partially overlapping - training sets (consisting of about 17.500 
documents and +/-56.600 terms) with their respective test sets of about 8.500 documents. 
Every one of these training sets will generate its respective classifier, which means that the 

                                                 

14 See Salton, G., Wong, A. and Yang, C.S. (1975) on vector space models as well as Magerman, Van Looy & 
Song (2009) for a more elaborated account on vector space models for patent and publication documents.  
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simulation will yield 10 different classifiers. If the results of these classifiers on their test sets 
are similar, we can be confident that any classifier that is generated in this way will yield 
similar results.  
For each of the 10 training sets, the terms (i.e. all terms that occur in the training set) are 
ordered by their frequency in this training set. Only terms that occur in 10 or more documents 
over the complete sample of 25000 are withheld as a certain term has to occur enough in order 
to have generalizing power over the whole dataset. This resulted in 4.148 terms withheld for 
the development of the qualifier. Next, a principal component analysis is performed on the 
training sets. The main purpose of this step is not dimensionality reduction, but de-correlating 
the variables. Highly correlated variables tend to be linearly dependent, which makes the 
covariance matrix positive semi-definite, while the discriminant analysis algorithms require 
positive definite covariance matrices. Retaining 99% of the variance removes the dimensions 
with an eigenvalue numerically equivalent to zero, solving the problem while retaining almost 
all information in the dataset. By applying a 99% threshold of withheld variance we obtain 
3.500 components. Next, we multiplied all obtained eigenvalues with the outcome variable. 
The obtained scores for each component have been ranked; within different simulations the 
number of dimensions used to arrive at a classifier (based on discriminant analysis) equals 10, 
50, 100, 500, 1000  and finally 3.500 components. The obtained findings reveal that the 
optimal amount of components for classification purposes amounts to 1000; When all 
dimensions are kept, over-fitting occurs (performance on training keeps on rising, but 
performance on test gets worse). The accuracy level obtained for training sets equals 94,1% 
(correctly classified/total number of references), for the test sets we obtained an accuracy 
level of 92%. The different simulations generated highly congruent outcomes, signaling the 
robustness of the overall approach.  

Data 
The above-described methodology was used to characterize all non-patent references (N= 
11388123) in the PATSTAT database (version 04/2009). 58% of all NPRs were characterized 
as “scientific”: referring to the serial journal literature or to proceedings, implying that 
approximately 42% of all non-patent references are not scientific. 
In what follows, we analyze indicators based on non-patent references, whereby we are 
primarily interested in the difference between NPR- and SNPR-based indicators. For these 
analyses, we consider EPO (applications and grants) and USPTO (grants) patents with  
application years 2000-2009, and with applicant countries in EU15, Switzerland, US, Canada, 
Japan and Korea. Indicators are broken down by patent system (EPO versus USPTO), 
application year, applicant country and technology domain (according to the FhG19 
classification). Full counting schemes are used for patents that are assigned to different 
countries and technology fields. Starting from the number of patents, we calculate for each 
year/patent system/country/field combination: (1) the average number of patents with non-
patent references, (2) the average number of references, (3) the size of the footprint as the 
proportion of patents with non-patent references and finally (4) the depth of the footprint as 
the average number of non-patent references per cited patent or. Each indicator is calculated 
twice: once using all NPRs and once using only scientific NPRs. Finally we include the 
traditional indicator denoting ‘Intensity’, i.e. the number of references divided by all patents.  

Analyses and results 

Difference between NPR-based and SNPR-based indicators  
Scientific NPRs represent a fraction of all non-patent literature. In table 1, the differences 
between NPR- and SNPR-based indicators are shown, and their significance is evaluated 
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using a paired-sample t-test. Results are presented for EPO and USPTO patents separately, as 
well as for the aggregate set of EPO and USPTO patents.    

Table 1. Paired-samples t-test: NPR- versus SNPR-based indicators (N=6540) 

 EPO USPTO AGGREGATE 
 All 

NPRs 
Subset 
SNPRs 

t-value 
(sign.) 

All 
NPRs 

Subset 
SNPRs 

t-value 
(sign.) 

All 
NPRs 

Subset 
SNPRs 

t-value 
(sign.) 

(1) Average # patents 
with references 

124,77 67,43 25,39** 201,83 113,67 15,50** 159,33 88,17 25,02** 

(2) Average # of 
references 

355,88 219,63 24,26** 1888,80 1110,01 10,77** 1043,35 618,94 12,94** 

(3) Average % of 
patents with references 
(as portion of total 
number of patents)  
SIZE 

29,78% 15,61% 66,05** 43,80% 22,58% 64,51** 36,07% 18,73% 89,35** 

(4) # references / # 
patents with references 
 DEPTH 

2,65 2,75 -4,44** 6,84 6,72 1,55 
(n.s.) 

4,52 4,52 ,03 
(n.s.) 

# references / total # 
patents 

0,85 0,53 59,05** 3,31 2,05 43,47** 1,95 1,21 51,24** 

 
Table 1 first reveals some differences between reference-based indicators for EPO and 
USPTO patents. USPTO patents have considerably higher volumes of references and of 
patents with references. Also in terms of impact, USPTO patents contain approximately 2,5 to 
4 times more (S)NPRs per patent than EPO patents. These observations hold for NPR- as well 
as SNPR-based indicators and are in line with findings from previous studies. They largely 
result from different citation requirements and philosophies at the USPTO (duty of disclosure; 
documentary search) and at the EPO system (no duty of disclosure; patentability search) 
(Michel & Bettels, 2001).  
As for the difference between NPR- and SNPR-based indicators, it can be seen that the 
fraction of NPRs referring to the scientific literature (journal articles and proceedings) is 
about 60%. This leads to considerable differences in derived indicators. The difference 
between NPR- and SNPR-based indicators is most prominent for the size indicator (indicator 
3): the proportion of patents containing NPRs is 36% when all NPRs are considered, and is 
almost cut in half to 19% when only scientific NPRs are considered. The depth (intensity-
indicator 4, measuring the number of references per citing patent) is 4,5 and appears to be 
independent of whether all NPRs versus only scientific NPRs are considered. This is because 
the denominators are adapted to the considered subset: whereas the volume of patents with 
NPRs is used as the denominator for the NPR intensity, the volume of patents with scientific 
NPRs is used as a denominator for the SNPR intensity indicator. If, alternatively, the same 
denominator is used for both (NPR and SNPR) intensities – namely the total number of 
patents – then both intensities differ significantly. 
The observed differences between NPR- and SNPR-based indicators underline the relevance 
of singling out scientific NPRs when developing indicators of science-technology relatedness, 
based on references from patents to the non-patent literature. This relevance is especially 
pronounced for indicators that reflect the scientific size, i.e. the share of patents that contain 
references to the scientific literature. Not distinguishing scientific references leads to an 
approximate 200% overestimation of the scientific size within technology.  
Further support for the relevance of singling out scientific NPRs is presented in table 2. This 
table relates the scientific or non-scientific character of NPRs to citation categories that are 
added in European search reports. When European search reports are drafted, categories are 
assigned to all documents cited in the search report. These categories reflect the relation or the 
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relevance of the reference to the patented technology. The most important - and most frequent 
- categories are the X, Y and A categories. The two former ones are assigned to references 
that question the novelty or inventive step of patent claims. More specifically, ‘X’ documents 
are considered highly relevant and related to the technology, as they can by itself and alone be 
prejudicial to the novelty. ‘Y’ documents from their part are also included for questioning the 
inventive step of a patent claim, but only if considered in combination with another document. 
‘A’ references do not challenge novelty or inventive step, but rather document the technical 
background of the invention. These different citation categories hence have different degrees 
of linkage: whereas ‘X’ references have a very high degree of linkage, this degree may vary 
for ‘Y’ references. ‘A’ references usually represent lower proximity or less immediate 
relevance to the patented technology (see Meyer, 2000b). It can be seen in table 2 that the 
largest difference between scientific and non-scientific references lies in the proportion of A 
references (i.e. the ones with the lowest proximity to the invention). This proportion is higher 
for the non-scientific references, meaning that these references contain relatively more source 
material with a lower degree of linkage to the developed technology (significance of relations 
supported by chi square test).  

Table 2. Breakdown of scientific and non-scientific references in citation categories  

(EPO patents only) 
 non-scientific % non-scientific scientific % scientific 
A 130491 41,43% 189201 36,08% 
X 114975 36,50% 183580 35,01% 
Y 39063 12,40% 82352 15,71% 
D 17625 5,60% 35935 6,85% 
P 8718 2,77% 25066 4,78% 
T 1707 0,54% 7325 1,40% 
L 1672 0,53% 528 0,10% 
E 608 0,19% 160 0,03% 
O 132 0,04% 178 0,03% 
Total 314991 100% 524325 100% 

 
Finally, the in table 1 revealed differences between the EPO and USPTO patent system put 
forward the relevance of specificities in citation practices and characteristics. In the following 
section, we consider how several other potentially relevant factors influence the occurrence of 
scientific NPRs and hence the value of SNPR-based indicators.  

Scientific size and depth: influencing factors 
Many science-technology studies point out the importance of influencing factors when 
studying science-technology relations and related indicators (for an overview: see Van Looy 
et al., 2002). Patent system characteristics, national specificities and technological fields are 
among the most important factors. 
The USPTO and EPO systems differ considerably in terms of search and examination 
procedures. It has been argued that the comprehensiveness and the quality of citation lists 
appearing in patent documents vary significantly as a function of the patent office (Meyer, 
2000b; Michel and Bettels, 2001). At USPTO, patent applicants have a duty of disclosure, 
meaning that they must provide all information that is reasonably deemed necessary to 
properly examine the patent application and that they were aware of prior to the filing date of 
the application. When filing for a patent at EPO, applicants are under no such duty of 
disclosure. As Michel and Bettels (2001) point out, this leads to a situation where the average 
US search report has the characteristics of a documentary search, whereas the EPO search 
reports reflect patentability searches. The patentability search is not exhaustive in the same 
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sense as the documentary search in that it should be limited to what is directly relevant to 
patentability. In addition, USPTO and EPO patents differ in terms of the references that are 
published and hence made available in large-scale in patent databases. Whereas UPSTO 
patents list all examiner- and applicant-given references, the search reports for EPO patents 
contain examiner-given references. Applicant-given references are only included in EPO 
search reports if they are deemed relevant by the examiner in the patentability search. These 
differences imply several things. First, the volume of references in USPTO patents will be 
considerably higher than the volume of references in EPO patents, as already confirmed in our 
dataset of SNPR-based indicators (cf. supra table 1). Second, the proportion of applicant-
given references – as registered in most available patent databases – will be higher for US 
patents than for EPO patents. These differences will influence the number and type of 
references cited in patents from both systems. 
Moreover, the relations between science and technology and the indicators for measuring 
these are influenced by differences in national innovation systems (Harhoff et al., 2003; Van 
Looy et al., 2002). The scientific texture that characterizes a country and the extent of the 
national science-base will likely influence measures of science-technology relations, 
especially when indicators are based on the occurrence of references to the scientific 
literature. Such differences should be taken into account when comparing the scientific 
footprint within technologies across the boundaries of national innovation systems. It should 
be noted here that, if examiner-given references prevail, applicant countries may have less 
bearing on citation practices and characteristics. Examiners are located centrally and are not 
structurally related to the applicant countries of the patents that they examine. In line with the 
abovementioned argument on the higher share of applicant-given references in USPTO 
patents, an interaction effect may be assumed whereby the influence of applicant country on 
SNPR-based indicators would be more outspoken for USPTO patents than for EPO patents.  
Finally, technology domains play an important role. Much in the same way that the propensity 
to publish and the propensity patent varies heavily between disciplines and fields, so will 
citation practices differ within and between science and technology spheres. Several studies 
point to field specific effects that need to be taken into account when using and interpreting 
indicators of science-technology relatedness (Callaert et al., 2006; Harhoff et al., 2003; Van 
Looy et al., 2002, 2003). Patents within technologies that are strongly linked to scientific 
progress and a knowledge base (e.g. pharmaceutics, chemistry,…) will show a higher 
proportion of scientific references than domains that are known to be less science-intensive 
(e.g. some machinery- and transport related subfields).  
In what follows, we show to what extent these factors influence SNPR-based indicators. 
ANCOVA analyses were performed with scientific size and depth (measured by using only 
scientific NPRs) acting as dependent variables. They were logarithmically transformed to 
comply with normality assumptions. Independent variables are the applicant country, the 
technological field and the publication authority. To account for potential evolutions over 
time, a year covariate is included in the model. Interaction effects are included between patent 
system and applicant country, as well as between patent system and technological field. The 
results are shown in table 3.  

Table 3. ANCOVA analyses: Influences on the size and depth of the scientific footprint 
 DEP VAR = size of scientific footprint (ln) DEP VAR = depth of footprint (ln) 
 Type III Sum of 

Squares 
df F Sig. Type III Sum of 

Squares 
df F Sig. 

Corrected Model 108,606 76 144,541 ,000 1021,775 76 82,313 ,000 
Intercept ,357 1 36,072 ,000 ,483 1 2,957 ,086 
Application Year ,337 1 34,045 ,000 ,685 1 4,197 ,041 
Publication Authority 3,210 1 324,693 ,000 258,690 1 1583,813 ,000 
FTC 19 97,832 18 549,741 ,000 407,145 18 138,484 ,000 
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Country of Applicant 3,235 19 17,219 ,000 106,897 19 34,446 ,000 
Publication Authority  * 
FTC 19 

2,512 18 14,116 ,000 34,456 18 11,720 ,000 

Publication Authority * 
Country 

1,093 19 5,820 ,000 59,983 19 19,328 ,000 

Error 63,898 6463   851,459 5213   
Total 334,867 6540   13561,553 5290   
Corrected Total 172,504 6539   1873,234 5289   
R-square ,630 ,545 
Adj R-square ,625 ,539 
 
Patent system, technology domain, and applicant country significantly influence both size and 
the depth of the scientific footprint (as measured by using only scientific NPRs). In addition, 
the interaction effects are significant, meaning that the influence of applicant countries differs 
between EPO and USPTO patents, as does the influence of technology domains. In what 
follows, we use simple descriptive statistics to shed further light on these influencing factors.  
Figures 1a and 1b show the influence of technological domains on scientific size and depth 
respectively. The figures distinguish between EPO and USPTO patents, to graphically present 
the interaction effects observed in table 3. 

 
Figure 1a – Influence of technological domains on the size of the scientific footprint 
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Figure 1b – Influence of technological domains on the depth of the scientific footprint 

Overall, the observations confirm that a scientific footprint is most outspoken for fields like 
Pharmaceuticals and Chemicals. At the lower end are domains that are known to be less 
science-intensive, such as General machinery, Transport, Machine-tools, Energy machinery, 
Metal products. The technological specificity pattern of scientific size (Figure 1a) is quite 
similar for EPO and USPTO patents; although EPO patents show less variety. Also in terms 
of scientific depth (Figure 1b), the technological specificities are reflected more strongly in 
USPTO patents, with a notably ‘deep’ scientific footprint for Pharmaceuticals.  
Figures 2a and 2b show the influence of applicant countries on scientific size and depth 
respectively. Only those countries are included with an annual average of at least 20 patents 
per technology domain.  
 

 
Figure 2a – Influence of applicant countries on the size of the scientific footprint 
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Figure 2b – Influence of applicant countries on the depth of the scientific footprint 

 
Overall, these figures show that the scientific footprint is most prominent in patents from 
Canada, the United States, the United Kingdom and Denmark. For Japan, Austria and Korea, 
the scientific footprint is least apparent. It is no coincidence that English speaking countries 
have an advantage in terms of their ability to link up with the scientific literature, which 
consists mainly of English-written sources. Country-effects are at the same time shown to 
depend on which indicator is used. For instance, patents from Belgian applicants appear at the 
top in terms of scientific size (figure 2a), whereas they are more average in terms of scientific 
depth (figure 2b). The opposite holds for patents from Spanish applicants: although their 
scientific size is average, it can be seen that for those Spanish patents that cite scientific 
references, the average number of cited references is high in comparison to other countries. 
Finally, the influence of applicant countries on the scientific footprint in patents is much more 
outspoken for USPTO patents than for EPO patents. As suggested earlier, this likely results 
from the fact that USPTO patents include a higher proportion of applicant-given references, 
hence they will be more influenced by applicant-level characteristics.   

3.3. Influences on differences between NPR- and SNPR-based indicators: altered ranks 
We showed earlier that science-technology indicators differ, depending on whether only 
scientific NPRs or all NPRs are considered. Hence, reference-based indicators are sensitive to 
the specific subset of NPRs that is considered in building the indicators. The higher this 
sensitivity, the more appropriate it becomes to distinguish scientific from non-scientific 
NPRs.  
In this section, we investigate to what extent such sensitivity – and hence the relevance of 
isolating scientific NPRs – is influenced by the factors identified in the previous section: 
patent system, technology domain, and applicant country. ANCOVA analyses are performed, 
with the ratios of SNPR- to NPR-based measures as dependent variables. Ratios were 
logarithmically transformed to comply with normality assumptions. Results are indicated in 
table 4.   
Table 4. ANCOVA analyses: Influences on the ratio between SNPR- and NPR-based indicators 

 DEP VAR = Ratio: size SNPR / size NPR (ln) DEP VAR = Ratio: depth SNPR / depth NPR (ln) 
 Type III Sum of 

Squares 
df F Sig. Type III Sum of 

Squares 
df F Sig. 

Corrected Model 135,779 39 161,359 ,000 19,620 39 19,641 ,000 
Intercept 2,754 1 127,633 ,000 ,139 1 5,429 ,020 
Application Year 2,866 1 132,852 ,000 ,097 1 3,789 ,052 
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Publication 
Authority 

,162 1 7,489 ,006 ,892 1 34,829 ,000 

FTC 19 124,221 18 319,851 ,000 14,904 18 32,327 ,000 
Country  6,379 19 15,562 ,000 3,598 19 7,393 ,000 
Error 127,559 5912   134,469 5250   
Total 1012,880 5952   2687,019 5290   
Corrected Total 263,338 5951   154,089 5289   
R-square ,516 ,127 
Adj R-square ,512 ,121 
 
The sensitivity of indicators to the considered subset of NPRs is shown to vary across patent 
systems, technological domains and applicant countries. The size ratio is somewhat higher for 
EPO than for USPTO patents. More notable however is the effect of the patent system on the 
depth ratio. For EPO patents, the scientific footprint becomes deeper if one considers only 
scientific NPRs (ratio depth SNPR/NPR > 1). For USPTO patents on the other hand, the 
scientific footprint becomes more shallow if only scientific references are considered.  
Technology domains were shown to influence the size of the scientific footprint (see table 3 
and figures 1a and 1b). In table 4, it is shown that they also affect the extent of the difference 
between NPR- versus SNPR-based indicators. An important implication for the practice of 
indicator development is that the ranking of technology fields by scientific size and depth will 
change, depending on which subset of NPRs is used for developing the indicator. This is 
demonstrated in table 5.  

Table 5. NPR- versus SNPR-based indicators and ranks across technology domains 
Technology Domain 
 

size 
NPR 

rank 
size 
NPR 

size 
SNPR 

rank 
size 

SNPR 

depth 
NPR 

rank 
depth  

NPR 

depth 
SNPR 

rank 
depth 
SNPR 

Pharmaceuticals 76,6% 1 70,0% 1 11,64 1 10,30 1 
Basic chemicals, paints, soaps, petroleum 
products 

53,1% 2 37,8% 2 6,57 2 6,47 2 

Measurement, control 47,4% 3 33,5% 3 5,54 3 5,79 3 
Electronic components 45,6% 4 28,4% 4 4,60 5 4,94 7 
Telecommunications 42,6% 6 26,0% 5 4,02 8 3,45 12 

Computers, office machinery 44,8% 5 25,6% 6 4,15 6 3,65 10 
Audio-visual electronics 41,8% 7 21,8% 7 3,43 13 3,02 16 
Optics 40,0% 8 20,7% 8 3,63 10 3,81 9 
Medical equipment 30,7% 11 18,5% 9 4,88 4 5,15 6 
Polymers, rubber, man-made fibres 32,6% 10 13,5% 10 3,48 12 3,84 8 
Non-polymer materials 35,4% 9 12,8% 11 3,76 9 3,64 11 
Electrical machinery, apparatus, energy 29,6% 12 10,0% 12 3,20 14 3,26 14 
Textiles, wearing, leather, wood, paper, 
domestic appliances, furniture, food 

25,4% 16 9,6% 13 4,09 7 5,28 5 

General machinery 26,3% 13 6,4% 14 2,79 15 3,17 15 
Special machinery 23,4% 18 5,9% 15 3,51 11 5,64 4 
Machine-tools 25,7% 14 4,6% 16 2,37 17 2,42 18 
Transport 25,7% 15 4,1% 17 2,46 16 2,35 19 
Energy machinery 24,2% 17 3,8% 18 2,36 18 2,85 17 
Metal products 14,9% 19 2,7% 19 2,29 19 3,39 13 
 Kendall’s tau rank order correlation: 

0,833** 
Kendall’s tau rank order correlation: 

0,661** 
 
It can be seen that the top 3 technology domains (Pharmaceuticals, Chemicals and 
Measurement) are ranked robustly across the different indicators. For countries outside the top 
3 however, there are some non-trivial shifts in ranks, depending on whether NPRs or SNPRs 
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are considered. This is especially pronounced for the depth indicator (see also its lower rank 
order correlation): the focus on only scientific references causes the domains of 
‘Telecommunications’ and ‘Computers, Office Machinery’ to each drop 4 places in the 
ranking, whereas the domains of ‘Metal Products’ and ‘Special Machinery’ climb up 6 and 7 
places respectively in terms of scientific depth.  Just like technology domains, applicant 
countries were shown to influence not only the scientific footprint in technology (see table 3 
and figures 2a and 2b), but also the extent of the difference between NPR- versus SNPR-
based indicators (see table 4). Table 6 demonstrates what this implies in terms of shifts in 
national rankings. Only those countries are included with an annual average of at least 20 
patents per technology domain.  

Table 6. NPR- versus SNPR-based indicators and ranks across applicant countries 
Applicant 
country 

size NPR rank size 
NPR 

size SNPR rank size 
SNPR 

depth 
NPR 

rank 
depth 

NPR 

depth 
SNPR 

rank 
depth 
SNPR 

BE 41,1% 2 23,3% 1 4,37 8 4,85 7 
CA 38,5% 4 23,0% 2 5,92 2 5,87 3 
DK 35,4% 10 22,5% 3 4,85 4 5,37 4 
GB 41,1% 1 22,3% 4 4,70 5 5,32 5 
US 36,5% 8 20,6% 5 6,29 1 6,01 2 
NL 38,8% 3 20,0% 6 3,75 10 3,84 10 
FI 36,7% 7 18,6% 7 3,92 9 3,97 9 
CH 37,2% 6 18,4% 8 4,48 6 4,65 8 
FR 37,5% 5 18,3% 9 3,29 13 3,44 12 
SE 35,8% 9 17,1% 10 4,44 7 5,06 6 
ES 29,0% 16 16,6% 11 5,24 3 7,04 1 
DE 35,0% 11 16,2% 12 3,38 11 3,48 11 
IT 32,3% 14 15,8% 13 2,96 15 3,39 13 
KR 31,5% 15 15,8% 14 2,95 16 3,06 16 
AT 32,9% 13 15,0% 15 3,03 14 3,19 15 
JP 34,0% 12 14,4% 16 3,33 12 3,25 14 
 Kendall’s tau rank order correlation: 0,550** Kendall’s tau rank order correlation: 0,883** 
 
It can be seen in table 6 that there are considerable shifts already at the top, depending on 
whether NPRs or SNPRs are used to calculate scientific footprint indicators. Shifts are most 
outspoken for the scientific size indicator (as reflected also in the lower rank order 
correlation). Especially Denmark and Spain benefit when SNPRs are considered instead of all 
NPRs: they climb up 7 and 5 positions respectively. Denmark hence enters the top 3, whereas 
it was ranked only 10th when all NPRs were considered. Spain makes a sizeable jump from 
the 16th to the 11th rank. Japan and France each drop with 4 positions in the size ranking. For 
the depth indicator, the shifts in national rankings are more modest. It should be noted that 
even small shifts in ranks can be non-trivial, especially at the top. For example, Belgium 
becomes ranked first rather than second in terms of scientific size. The US drops from the 
first to the second rank in terms of scientific depth. Due to the apparent sensitivity of these 
rankings to the NPR subset on which the indicators were built (i.e. NPRs versus scientific 
NPRs), and due to the non-triviality of even minor shifts in the rankings, one should be 
cautious when interpreting these indicators.  

4. DISCUSSION AND CONCLUSION 
Significant differences were revealed between NPR- and SNPR-based indicators. This 
indicates the relevance of distinguishing only scientific references, at least if one is concerned 
with content validity of the reference-based measures for capturing relations between 
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scientific and technological activities. It is known from the literature and from previous 
studies that NPR-based indicators are noisy, and not as straightforwardly interpretable as 
references between scientific articles. This is not only due to the specificities in citation 
practices (e.g. examiner versus applicant-given references) but it is also due to the 
heterogeneity present in non-patent references cited in patent documents. By means of text 
mining techniques and machine learning algorithms, we are able to discern scientific from 
non-scientific references with considerable levels of accuracy (92%). Identifying ‘real’ 
scientific references (i.e. references to the serial literature of journal articles and proceedings) 
is instrumental for reducing the noise in NPR-based indicators considerably.  
In addition, the observed differences between the scientific size and depth indicators imply 
that they should be used as complementary indicators, thereby providing additional support to 
pleas for compound indicator systems. Third, our results underline the importance of taking 
into account influencing factors when interpreting SNPR-based indicators of science 
technology interaction. Differences between EPO and USPTO are at least partly a reflection 
of different underlying practices in the search for prior art. At the same time, the results show 
specificities relating to technology domains and applicant countries. Moreover, the patterns of 
these specificities change when only scientific NPRs are considered for the indicator 
development. Due to the consequent sensitivity of technological and national rankings to the 
NPR subset on which the indicators were built (i.e. NPRs versus scientific NPRs), one should 
be very cautious when interpreting indicators, even more so when these indicators are used to 
inform policy making on science-technology interactions.  
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