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Abstract 
Using citation analysis, sets of documents can be compared as independent samples; for example, in terms of 
average citation counts using potentially different reference sets. From this perspective, the size of samples 
matters only for the statistical significance testing of differences and the error estimation. Using the percentile 
rank approach, differences among citation distributions can be studied in a single scheme. The comparison 
among the sets reveals that different sizes of the samples affect the weighing of the probabilities and therefore 
the rankings. We distinguish among (1) the normalization of papers against external reference sets, (2) the 
normalization in terms of frequencies relative to the margin-totals of independent versus dependent samples, and 
(3) the potentially normative definition of percentile rank classes for the evaluation (e.g., top-1% most highly 
cited; median, etc.). 

Introduction 
Last year (2010), a short controversy flourished about the normalization of citation indicators. 
The controversy (Bornmann, 2010; Leydesdorff & Opthof, 2010 and 2011; Van Raan et al., 
2010a; Waltman et al., 2011) led CWTS (the Center for Science and Technology Studies) 
shortly thereafter to propose a new crown indicator “MNCS” (the Mean Normalized Citation 
Scores) and several derivatives of this indicator (such as MNCS1 and MNCS2; Van Raan et 
al., 2010b; Waltman et al., in press). Using MNCS, the “rate of averages” (CPP/FCSm: that 
is, the average citation per publication divided by the mean citation rate in the corresponding 
fields) thus was changed into the “averaging of rates”—as Gingras & Larivière (2011) 
summarized the core issue of the debate. The “new crown indicator” does not suffer from the 
shortcomings of the old one (Waltman et al., 2011). In our opinion, however, several issues 
which can be raised with respect to the normalization of citation scores have not yet 
sufficiently been discussed. Closure of the debate by establishing a new “crown indicator” 
could from this perspective be premature.  
First, the new crown indicator (as the old one) is based on using (arithmetic) averages of – as 
a rule – highly skewed citation distributions. Both Bornmann & Mutz (2011) and Leydesdorff 
& Opthof (2011) raised the issue that it might be better to use the median and non-parametric 
statistics instead. More specifically, Bornmann & Mutz (2011) proposed an elaboration into a 
scheme which they called the “percentile rank approach” and which is already in use as the 
evaluation scheme in the Science & Engineering Indicators of the National Science 
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Foundation of the USA (NSB, 2010), prepared biannually by the American corporation ipIQ. 
In this scheme the focus is not only on (relative) citation rates, but also on the top-cited papers 
(Bornmann et al., 2010a). 
Bornmann et al. (2008) raised the issue of using journals or groups of journals (aggregated 
into so-called Subject Categories by the Institute of Scientific Information (ISI) of Thomson 
Reuters) as systems of reference for the normalization. Rafols & Leydesdorff (2009) argued 
that these ISI Subject Categories are provided for reasons other than bibliometric 
measurement and had been shown as faulty in more than 40% of individual cases (see here 
also Boyack et al., 2005; Garfield & Pudovkin, 2002, at p. 1113n.). The use of these 
categories for journal classification as in the field-normalization of many of the existing 
indicators (including MNCS) therefore would be unfortunate. The ECOOM center in Leuven 
(Belgium) developed its own classification scheme (Glänzel & Schubert, 2003), but Rafols & 
Leydesdorff (2009) showed that this classification of journals does not improve on the ISI 
Subject Categories; the latter are finer grained and therefore less error-prone than the newly 
proposed ones (Leydesdorff & Rafols, 2009).  
In addition to classifications of journals grouping potentially heterogeneous sets, journals 
themselves can be heterogeneous in terms of document types, citation half-lives, cognitive 
substance, etc. (Leydesdorff, 2008; Moed, 2010). Bornmann et al. (2008) therefore proposed 
to use classification schemes at the level of individual papers such as the Medical Subject 
Headings (MeSH) of Medline, that is, the publicly available database of the National Institute 
of Health of the USA. Bornmann et al. (2011; in press), for example, applied the percentile-
rank approach using the classifications of Chemical Abstracts. Leydesdorff & Opthof (2010) 
proposed to appreciate differences among individual papers by using fractional counting of 
the citations in terms of the number of references in the citing papers with the argument that 
differences in so-called “citation potentials” (Garfield, 1979, at p. 365) are generated on this 
side of the citation process. Similar proposals had been done by Moed (2010), Zitt (2010), and 
Zitt & Small (2008) for the normalization of journal impacts using citing-side normalizations 
(Leydesdorff & Bornmann, 2011). 
In this study, we focus on cited-side normalizations and try to take the discussion about this 
subject one step further by raising in addition to the problem of normalization, the problem of 
evaluation (for example, in terms of 1% most highly cited papers), and the issue of how to 
appreciate differences in productivity (publication rates) using citation analysis. With the 
exception of the h-index—which is also defined in terms of numbers of publications that meet 
a specified criterion (Hirsch, 2005)—citation indicators hitherto have abstracted from 
publication behavior and differences in productivity rates. However, in evaluation practices 
one often is confronted with questions such as how to weigh one paper in the top-1% (of the 
most cited papers) range against five or ten papers in the top-5% range, etc. The current 
schemes do not allow for quantitative assessments of such comparisons. 
In summary, we distinguish first a number of analytical questions and then elaborate on the 
percentile rank approach for developing a set of criteria that can be met with this new 
indicator for citation analysis. Let us list these criteria:  
1. A citation-based indicator were to be defined so that the choice of the reference set(s) can 

be varied by the analyst independently of the question of the evaluation scheme. In other 
words, these two dimensions of the problem have to be disentangled; 

2. The citation indicator should leave room for different evaluation schemes, for example, by 
funding agencies. Some agencies may be interested in the top-1% (e.g., the National 
Science Board; NSB, 2010) while others may be interested in answers to questions of 
whether papers funded by the agency perform significantly better than comparable non-
funded ones (e.g., Bornmann et al., 2010b); 
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3. The indicator should preferentially allow for taking productivity into account. Thus, one 
should, for example, be able to compare two papers in the 39th percentile with a single 
paper in the 78th percentile (with or without weighting the differences in ranks in an 
evaluative scheme as specified under 2.); 

4. The indicator should provide the user, among other things, with a relatively 
straightforward criterion for the ranking (for example, a percentage of a maximum) that 
can additionally be tested for its statistical significance in relation to comparable (sets of) 
papers; 

5. It should be possible to indicate statistical error of the measurement. 
 
In this study, we try to make important steps in relation to these stated objectives. For this 
purpose, we joined forces between our two teams which have previously been involved 
independently in the noted controversy. First, we replicated the measurements of CWTS 
(2008) and Opthof & Leydesdorff (2010) for the purpose of establishing the percentile ranks 
of citations of the papers under study in their respective reference sets, and secondly, we 
elaborate on the ideas of Bornmann & Mutz (2011) for developing percentile ranks as 
schemes which allow us to compare across sets using non-parametric statistics. Using the 
percentile rank values allows us to express differences in terms of numbers which can be 
considered as percentages and we will specify how differences among these numbers can be 
tested for their significance. Using the six-rank scheme of the National Science Foundation 
(Bornmann et al., 2010a; NSB, 2010), for example, we show the effect of the non-linear 
transformation implied when using such an evaluation scheme.  

Methods and materials 
Because as academics, we do not have the possibilities for manipulating yearly volumes of 
the Science Citation Index similarly to the quasi-industrial centers which license the database 
for evaluation purposes, we used the Web-of-Science interface at the Internet and confined 
the normalization to seven sets and the comparable documents (in terms of document types) 
in the same journals and publication years. Although the choice of the normalization baseline 
matters (Colliander & Ahlgren, 2011), this normalization is not fundamental to the analytical 
approach, but serves us as an example. In our scheme, one needs one normalization or another 
against a reference set for each paper (Radicchi et al., 2008). One could, for example, 
consider the un-normalized citation rates as a zero-normalization because all reference sets 
are then set equal to unity. 
Because the ISI split the category of “articles” into articles and proceedings papers in the 
period under study (in October 2008), we will consider “articles OR proceedings papers” as 
our reference sets in the publishing journals in the specific years of publication of 241 source 
documents. These source documents were published by seven Principal Investigators (PIs) in 
the Academic Medical Center (AMC) of the University of Amsterdam. The PIs belong to a 
group of 232 scientists evaluated by CWTS (2008 and 2010). Opthof & Leydesdorff (2010) 
provide reasons for selecting these seven scientists in terms of the distributions of citations as 
a representative sample given the range in the larger group. The seven authors published 23, 
37, 22, 32, 37, 65, and 32 papers, respectively, during this period. The seven document sets 
overlap in seven coauthored papers. Thus, 248 – 7 = 241 papers could be attributed to seven 
document sets. The seven sets constitute our units of evaluation. 
For these 241 documents and their corresponding reference sets in the journals published in 
the same years, we determined citation rates in early November 2010. For each paper thus a 
number of citations per paper (“CPP” in the terminology of CWTS) and “journal citation 
score” (“JCS”) can be computed and thus for each set a so-called CPP/JCSm (mean citation 
rate divided by mean journal citation score) can be calculated both in terms of a “rate of 
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averages” or as an “average of rates” (that is, an MNCS but then defined at the journal level; 
Van Raan et al., 2010b, at p. 291). 
In order to move to the percentile rank approach, the citation of each paper is rated in terms of 
its percentile. In each set, the number of papers with citations smaller than the citation of a 
paper i is expressed as a percentage. In other words: if 65.4 % of the papers were below that 
of the ith paper with a certain citation, then the percentile score of this paper would be rounded 
to and classified into the 65th percentile class. Thus, for each set a column vector with 100 
values (from the 0th to the 99th percentile, but with ranks 1 to 100) is created. Note that the 
seven column vectors—representing the seven sets—are now equal in size and thus 
comparable. 
From this matrix (7 columns with each 100 rows), the six percentile impact classes used by 
the NSF (NSB, 2010; cf. Bornmann et al., 2010a) for the evaluation were aggregated as 
follows: 

(1) bottom 50% (papers with a percentile less than the 50th percentile), 
(2) 50th – 75th (papers within the [50th; 75th[ percentile interval), 
(3) 75th – 90th (papers within the [75th; 90th[ percentile interval), 
(4) 90th – 95th (papers within the [90th; 95th[ percentile interval), 
(5) 95th – 99th (within the [95th; 99th[ percentile interval), 
(6) top 1% (papers with a percentile equal to or greater than the 99th percentile). 

Thus, a matrix of seven cases (rows) and six variables (columns) is generated. Note that the 
scores in this matrix are non-parametric (ordinal-scaled) while the previous ones of 100 
percentile classes were interval-scaled. In other words, this transformation by aggregation into 
six classes is non-linear. Thus, the percentile scores are transformed for the purpose of a 
normative evaluation. We use this evaluative scheme of the NSF in this study as an example 
of such an evaluation scheme. 
The mean percentile rank scores are calculated by weighting the relative frequencies p(x) in 
the k sets with their rank x, as follows:  

         (1) 
 
Thus, one paper in the 78th percentile weights twice as much as a paper in the 39th percentile 
in the case of the hundred percentile ranks while in the case of six ranks the paper in the 78th 
percentile would count three times as much as a paper in the 39th percentile. The maximum 
weight in the case of 100 classes [R(100)] is consequently 100, while this maximum is six in 
the case of six classes [R(6)]; namely, for the case that all papers are placed in the highest 
class, respectively. The minimum is always 1, that is, when all papers are to be placed in the 
first (and lowest) category.  
Above or below medium performance can be tested by testing the 100 percentile ranks against 
a median value of 50 using, for example, Wilcoxon’s signed-rank test (which is available 
under the non-parametric tests in SPSS) and against a similar reference value for R(6). This 
latter reference value can be obtained by the sum of the products of proportions of the 
percentile classes (50:25:15:5:4:1) multiplied with the rank numbers of the classes: for 
example, each count in the bottom-50% class counts as one, and a count in the top-1% as six. 
One thus obtains an expected value of R(6) for the case of random attribution, as follows: 
0.50*1 + 0.25*2 + 0.15*3 + 0.05*4 + 0.04*5 + 0.01*6 = 1.91. The observed distributions can 
be tested against this expected value using, for example, chi-square statistics.  
In the case of both R(6) or R(100)—or any other scheme for the evaluation—the sets can be 
tested against each other for statistical significance of the differences using Dunn’s test or 
Mann-Whitney’s U test. First, one should test whether differences among the scientists under 
study are significant using Kruskal-Wallis (rank variance analysis). If the null hypothesis is 
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not rejected (that is, no significant differences among the sets are found) then the analysis 
should be finished here. In the other case, one can further test the differences using the Mann-
Whitney U test on each two samples or Dunn’s test including an ex-post Bonferroni 
correction for multiple comparisons (in a single pass). The Mann-Whitney test is more 
conservative—that is, less inclined to flag differences as significant—than Dunn’s test, that is, 
the non-parametric version of the ANOVA-based Bonferroni correction (Levine, 1991, pp. 68 
ff.) Since Opthof & Leydesdorff (2010) used the latter test, we staid with this choice.  
The overall so-called family-wise alpha error (Type I) across all possible pairwise 
comparisons increases with the number of these pairwise comparisons c. For each pairwise 
comparison an adjusted alpha error of 0.05 divided by the number of all possible pairwise 
comparisons was used instead of an alpha error of 0.05. For n=7 there are c=n*(n-
1)/2=7*6/2=21 comparisons, and the adjusted alpha-level therefore amounts to 
0.05/21=0.0023. In general, this alpha-level of 0.05/c can be used as the significance level 
with the ex-post Bonferroni correction in the non-parametric case (Levine, 1991, pp. 68 ff.).  
Another issue is the normalization of the relative frequencies p(x) in terms of the respective 
margin totals (pi = fi / ni ; ni = Σi fi). If a scientist with 10 publications would have one 
publication in the 99th profile, this publication contributes for 1/10th times 100—the rank 
number—and therefore 10 percent points to his/her citation rank profile R(100) given the 
function in Equation 1 (above). However, a scientist with 100 publications of which one in 
the 99th profile, would add only a single percent point to this score. (An analogous reasoning 
can be elaborated for R(6).) Since publications in the highest ranks are scarce—given the 
well-known skewness in empirical citation distributions—this system thus can be expected to 
disadvantage productive scientists. For reasons of space constraints, we do not provide these 
more advanced statistics in this abbreviated version of the envisaged full paper.  
This effect disappears when the frequencies are not calculated relative to each subset (e.g., the 
œuvre of each scientist or group), but to the total set under study. The weighting is then 
similar for each scientist in the aggregated set. In order to make the resulting ranks 
comparable with the individually weighted (for example, as percentages), the results have to 
be multiplied again with k (in our case, k = 7). We distinguish between the two normalization 
by writing below R(6) and R(100) when normalizing over the six categories of 100 percentile 
classes for each set (vector) as independent samples, and R(6,k) and R(100,k) when 
normalizing also over the second dimension of the k subsets of a single sample. 
Using R(100,k), the effects of different publication rates are completely taken out of the 
equation: each publication in our case of the 248 documents under study has a weight of 
(1/248) in its percentile rank. The resulting percentile ranks [R(100)] thus can directly be 
compared with one another across the sets: two publications in the 39th percentile in one set 
now weigh equally as one publication in the 78th percentile in another in R(100,k). However, 
using R(6,k) a non-linear transformation is involved. Furthermore, papers in the same rank are 
equally appreciated using both R(6,k) and R(100,k). We will discuss the differences of and 
similarities between the two normalizations (in terms of relative frequencies) in the next 
section in empirical terms. 
In summary, we have thus constructed an indicator in which the different criteria specified 
above are analytically distinguished. The reference sets can be determined for each individual 
paper; for example, as the set of all papers in the same journal in the same year and of the 
same document type. Each set can be attributed a comparable score between 1 and 100 in the 
case of R(100) and R(100,k) or between 1 and 6 in the case of R(6) and R(6,k). (The latter 
score can also be expressed as a percentage of six.) The six classes or any other normative 
scheme for the assessment can directly be derived from the matrix of the percentile values 
because the evaluative scale is based on specific aggregation rules which can be chosen 
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differently depending on the purposes of the evaluation. The scores can be read as percentages 
of the maximum possible score for each document set under study. 
A disadvantage of our scores might seem to be that the idea of a “world average” provided by 
the old “crown indicator” as a baseline (CPP/FCSm = 1) has to be abandoned. In our opinion, 
an average is always sample-dependent unless one knows the population. The sample of 
documents can be as large as all documents contained in the Science Citation Index, but also 
the latter remains a sample which is based, for example, on Garfield’s (1971) Law of 
Concentration. More importantly, the concept of a “world average” as a standard confounds 
the analytically different questions of external normalization against a reference set for each 
paper and internal normalization as a relative frequency with that of evaluation standards. By 
this integration into a single number, one looses the possibility of using statistics and the 
indication of error. Instead, CWTS and ECOOM used “rules of thumb” for indicating 
significance in the deviation from the world standard as 0.5 (Van Raan, 2005) or 0.2 (CWTS, 
2008, at p. 7; cf. Schubert & Glänzel, 1983; Glänzel, 1992 and 2010).5  
The statistics implied in our procedures may seem sophisticated and at first sight complex 
because they involve non-parametric routines. When fully elaborated, these statistics can be 
automated in SPSS as a batch job. In this study, however, we guide the reader step-by-step 
through the procedures using relatively small sets as an example in order to enable users to 
reproduce the percentile-rank evaluation using their own datasets, their reference sets, and 
potentially different evaluation schemes.  

Results 
The distributions of the 100%-percentiles for each paper of the seven scientists under study 
are shown in Figure 1, both as scatter plots and box plots. The black dots in the boxes 
represent the arithmetic mean, the stars the minima and maxima, respectively. The borders of 
the boxes indicate the 25%, 50%, and 75% quantiles of individual distributions. Obviously, 
all scientists score across the whole variance, but in some cases (e.g., Scientists 2 and 3) the 
concentration in the top half is larger than at the bottom. Scientists 5 and 6 have publications 
in the 0th percentile.  
The ordering of the scientists from one to seven was based by Opthof & Leydesdorff (2010) 
on the ranking of these scientists in the original report of CWTS (2008). These rankings were 
based on CPP/JCSm in the CWTS terminology. Table 1 provides first the replication of this 
CPP/JCSm on the basis of our downloads of data (in November 2010)6 and then in the third 
column the ranking based on the alternative indicator proposed by Opthof & Leydesdorff 
(2010) and ever since elaborated by CWTS into the new crown indicator MNCS (or more 
precisely, the journal-equivalent of this indicator MNCS/MNJS; cf. Van Raan et al., 2010, at 
p. 291). The values for the four indicators proposed above [R(6), R(100), R(6,k), and 
R(100,k)] follow in the next columns. The consequent ranks are added in each column 
between brackets, providing a one to the highest value and a seven to the lowest. Table 2 
provides both the Pearson correlations (lower triangle) and rank-order correlations (Kendall’s 
tau-b) between these indicators.  

                                                 

Notes 
5 Schubert & Glänzel (1983) based their reasoning on normal distributions (Glänzel, 2010). The reasoning can 
be  used  to  estimate  error  in  large  sets  (Glänzel,  personal  communication,  16  November  2009),  but,  in  our 
opinion, this estimator is insufficiently precise for evaluations of smaller sets. 
6  Our  values  deviate  from  CPP/JCSm  in  that  we  did  not  correct  for  self‐citations  (CWTS,  2008;  Opthof  & 
Leydesdorff, 2010). 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Figure 1. Boxplots for citations of each paper in percentiles separated for seven scientists  

Table 1. Values and ranking (between brackets) using the various indicators 

Scientist Avg(CPP)/ 
Avg(JCS) 
(= CPP/JCSm) 

Avg(CPP/JCS) 
 

R(100) R(6) R(100,k) R(6,k) 

1 1.99 (1) 2.04 (± 0.50) (1) 61.17 (4) 2.83 (1) 39.71 (7) 1.83 (5) 
2 1.42 (3) 1.56 (± 0.16) (3) 69.81 (1) 2.68 (3) 72.91 (2) 2.79 (2) 
3 1.45 (2) 1.60 (± 0.24) (2) 69.55 (2) 2.77 (2) 43.19 (5) 1.72 (6) 
4 1.17 (4) 1.32 (± 0.15) (4) 64.34 (3) 2.34 (4) 58.12 (3) 2.12 (3) 
5 1.03 (5) 1.04 (± 0.15) (5) 55.49 (5) 2.00 (5) 57.95 (4) 2.09 (4) 
6 0.86 (6) 1.04 (± 0.11) (6) 50.69 (6) 1.91 (6) 93.00 (1) 3.50 (1) 
7 0.71 (7) 0.87 (± 0.15) (7) 46.88 (7) 1.72 (7) 42.34 (6) 1.55 (7) 
 

Table 2. Rank-order correlations (Kendall’s Tau-b; upper triangle) and Pearson correlations 
(lower triangle) between the various indicators. 

 Avg(CPP)/ 
Avg(JCS) 

Avg(CPP/JCS) 
 

R(100) R(6) R(100,k) R(6,k) 

CPP/JCSm   0.98 **  0.62  1.00 -0.24 -0.05 
Avg(CPP/JCS)  0.99 **   0.59  0.98 ** -0.20  0.00 
R(100)  0.68   0.71    0.62  0.14  0.14 
R(6)  0.93 *  0.95 **  0.89 **  -0.24 -0.05 
R(100,k) -0.38 -0.35 -0.13 -0.30   0.81 * 
R(6,k) -0.22 -0.18 -0.07 -0.16  0.98**  
Note: **. Correlation is significant at the 0.01 level (2-tailed); *. correlation is significant at the 0.05 level (2-tailed). 
 
As was to be expected (Waltman et al., in press), the first two indicators based on comparing 
citation scores versus journal citation scores parametrically are highly and significantly 
correlated (r = 0.99, p < 0.01; τ = 0.98, p < 0.01). Using the six percentile classes [R(6)], the 
ranking is precisely the same as with these two average-based indicators. However, R(100) 
deviates at one place from this shared pattern by replacing the number 1 to the fourth position 
behind the numbers 2, 3, and 4. This corresponds (not incidentally) with the visual impression 
obtained by inspecting Figure 1. R(100) can be considered as a summary indicator of the 
patterns shown in Figure 1. 
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Table 3: Number of papers published by seven scientists categorized to six percentile impact 
classes 

Percentile impact 
class 

Scientist 
1 

Scientist 
2 

Scientist 
3 

Scientist 
4 

Scientist 
5 

Scientist 
6 

Scientist 
7 

Total 

<50th (bottom 50%) 7 10 5 10 11 34 17 94 
[50th; 75th[ 6 5 4 8 18 14 9 64 
[75th; 90th[ 3 13 6 8 6 11 4 51 
[90th; 95th[ 1 5 5 5 1 1 2 20 
[95th; 99th[ 3 4 2 1 1 5 0 16 

≥99th (top 1%) 3 0 0 0 0 0 0 3 
Total 23 37 22 32 37 65 32 248 

 
Table 3 informs us about the distributions of the seven sets across the six percentile impact 
classes. Scientist 2 has more papers than Scientist 1 in most categories, but not in the 99th 
percentile rank (class 6). Given the smaller size of the œuvre of Scientist 1 the three papers in 
this category weigh heavily, namely: each for (6 * [1/22] = 0.27). This leads to a contribution 
of 0.82 on a score of 2.83. More dramatically, however, is the difference between these two 
scientists when scoring in the 95th percentile. The three papers of Scientist 1 in this class 
contribute 5 * (1/22) * 3 = 0.68 to the score, while the four papers of Scientist 2 in this same 
class contribute only 5 * (1/37) * 4 = 0.54 to his/her score.  
The example proves our point that citation scores that do not take publication rates into 
account “punish” productivity in terms of lower rankings. The six percentile classes make this 
quantitatively visible, but this same effect can also be expected using the average-based 
citations because they also operate on probability distributions while assuming independence 
among the samples. After such a normalization (e.g., using z-scores; cf. Radicchi et al., 2008) 
at the level of independent samples, the differences in size among the sets are manifested only 
in terms of the significance testing and error terms because in these computations the n of 
cases in each sample plays a role in the denominator (for example, as the square root of n in 
the case of computing the standard error of the measurement). However, citation analysts 
hitherto have paid insufficient attention to the question whether observed differences are also 
statistically significant; one rarely finds error estimates in the tables or error bars in the 
accompanying figures and graphs.  
Table 1, for example, contains the standard error of the measurement for the indicator 
proposed by Opthof & Leydesdorff (2010). The larger size of the error of the measurement 
for Scientist 1 (± 0.50) when compared with all others and the relatively low value of this 
parameter for Scientist 6 (± 0.11) could have flagged this spurious publication effect of the 
sample sizes (n1 = 22 and n6 = 65, respectively). However, the last two columns of Table 1 
show the effects of this correction quantitatively: Scientist 1 becomes the seventh in rank 
using R(100,k) and fifth in rank using R(6). However, Scientist 6 is now the highest ranked 
one using both these indicators. In the case of Scientist 1, the higher appreciation of the top-
percentile fully explains the difference of rating when using R(6,k) instead of R(100,k).  
Using R(6,k) or R(100,k), the four papers of Scientist 2 in the 95th percentile rank (class 5) 
and the three papers of Scientist 1 in this same class are contributing proportionally, that is, 
4:3, to their respective scores. As noted in the case of R(100,k) one weights two papers in the 
39th percentile of one scientist equally to one paper in the 78th percentile of another. This is 
transformed in the case of using R(6,k) for normative reasons; for example, because one is 
more interested in most highly-cited papers when comparing nations or institutions.  
The transparency of R(100,k) can be considered as an advantage, but a six-point scale such as 
R(6,100) may be felt as more functional to communications in the policy domain. Of course, 
the user (e.g., the policy maker) can suggest another scheme such as R(5,k) by specifying 
other classes. In some countries one is used to five point scales in the evaluation (e.g., the 
Netherlands), while in other countries six is in use as the highest score (e.g., Germany). 
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Conclusions and discussion  
Our purpose in this study was to provide citation impact indicators which are no longer based 
on averages, but on percentile ranks. We specified a number of criteria for a more abstract 
scheme that can also be used to organize and schematize different citation impact indicators 
according to the three distinguished degrees of freedom: the selection of the reference sets, the 
evaluation criteria, and the choice for defining the samples as independent or not.  
The proposed indicators [R(6), R(100), R(6,k), R(100,k)] first improve on the averages-based 
indicators because one can abstract from the shape of the distribution of citations over papers. 
Secondly, the choice of the reference set for each paper is no longer related to the evaluation 
scheme. Both the reference sets can be chosen—for example, as individual journals, groups of 
journals (e.g., ISI Subject Categories), papers selected on specific criteria such as index terms 
or keywords, etc.—and the evaluation schemes can be specified; for example, in terms of six 
classes or differently. The latter choice is a normative one, while the former one needs 
analytical grounding.  
The elaboration of the proposal of Bornmann & Mutz (2011) to use percentile ranks made us 
aware how sensitive citation-based indicators can be on sample sizes even after this first 
correction for differences in the shapes of the distributions. This result provided us with the 
major learning step of the study: one should compare “like with like” as Martin & Irvine 
(1983) once formulated in the early days of citation analysis, but one should not reduce this 
comparison to the specification of reference set(s) for each article.  The document sets under 
study are to be compared among them after being normalized at the individual paper level 
against the reference sets. The normalization in terms of the external reference sets and 
thereafter the rewrite as percentiles was not yet sufficient since one needs the additional 
normalization as relative frequencies across the sets under study. By normalizing the relative 
frequencies in terms of the grand total of the combined sample, one eventually obtains 
percentile rank scores that account for both differences in size and shape of the citation 
distributions. These scores [R(100,k) and R(6,k), or more generally: R(i,k)] are comparable 
across sets.  
Our data provided us with an opportunity to make a convincing case for this change in the 
framework of citation analysis—from considering sets as independent samples to subsamples 
of a single sample—by showing the dramatic mistake that one can make when one uses 
citation rates without taking sample sizes into account. Only because of the smaller sample 
size, Scientist 1 leaded the ranking: a paper in a similar rank contributed in this case 1/22 = 
0.045 to the total score while it would contribute only 1/37 = 0.027 for Scientist 2. Scientist 6 
with 65 papers thus was disadvantaged to the extent that s/he would lead the ranking when we 
corrected for this size effect. Since without this correction, the percentile ranks R(6) and 
R(100) correlated highly and significantly with the “Leiden” indicators (with or without the 
correction for the order of operations), the scores based on averages also suffer from this 
ignored size-effect.  
In other words, the initial step of Lundberg (2007) and Opthof & Leydesdorff (2010) of 
introducing significance testing and error indication in the measurement of average citations 
(as it had already been done previously by other centers; cf. Gingras & Archambault (2011)) 
was not yet a sufficient step. By proceeding to the percentile rank approach of Bornmann & 
Mutz (2011), we could make the next step in this study that the assumption of operating on 
independent probability distributions when using the mean or the median (or any other 
statistics) requires a further reflection. In citation analysis, one compares samples which are 
no longer independent when compared. Without normalization across the samples, one 
changes the basis for the comparison when moving from one set to another. 
In summary, using these indicators the citation analyst has three degrees of freedom: (1) one 
can choose external reference sets for each paper, (2) one can choose a normative evaluation 
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scheme, (3) one can choose sample definitions as independent or not. These three dimensions 
are analytically different, and the eventual scores will differ with these choices. Vice versa, 
there are no absolute citation impact scores which are independent of making these choices 
(such as a “world average”; Glänzel, 1992; Van Raan, 2005). As we argued, one can use zero-
normalizations such as choosing not to normalize against reference sets (that is, assuming the 
reference values to be equal to unity). The citation impact enterprise is thoroughly 
probabilistic and precisely the probability distributions lead us to a strong preference for 
defining probabilities across sets such as when using R(i,k) where i is the indicator for the 
(percentile rank) class and k the indicator of each subset. The new measure enables us to 
compare sets of different size among one another. 
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