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Abstract 
The structure of disciplines can be mapped using citation and co-citation analysis, viz. author, journal and 
document co-citation. Citation provides an underlying cognitive link between papers, journals, and authors that 
goes towards defining the interconnectedness of areas of research in these maps. In a less structured context, co-
occurrence of names of terrorist organizations in reports of terrorist violence in India has been used to draw a 
map of terrorist groups and linkages. Words in editorials of Science and Nature have been analyzed for content 
analysis. In this paper we have looked at a new measure of connectedness between research areas, namely, the 
migration of authors between subfields. Migration may be considered as an embodied knowledge flow that 
bridges some part of the cognitive gap between fields. Our hypothesis is that the rate of author migration will 
reflect cognitive similarity or affinity between disciplines. This is graphically shown to be reasonable above 
certain levels of migration for our data from Mathematical Reviews spanning 17 years (1959-1975). The inter-
related structure of Mathematics is then mapped using migration data in the appropriate range. We find the map 
to be a good reflection of the disciplinary variation in the field of Mathematics.    

Introduction  
The growth of scientific fields is frequently describable by S-shaped curves, with initial slow 
growth (as measured by research output in the form of publications) in the learning stages, 
followed by rapid growth and, subsequently, saturation as the potential of existing ideas to 
solve problems within that area is exhausted. A new idea introduced at this point can start 
another growth phase with similar characteristics. These ‘new’ ideas, methods or techniques 
are not necessarily those that have been created ab initio, but those that may already be in use 
in other areas and have been transplanted onto the new area.  
Innovative ideas in science often have their roots in other disciplines. Major developments 
have been known to arise from trans-disciplinary migration, the case of Max Delbruck from 
physics to biology or John von Neumann from mathematics to economics being specific 
examples. Cognitive mobility brings about interdisciplinarity, which, according to modern 
theories, is at the heart of new forms of knowledge production. As knowledge transcends 
disciplinary boundaries, the boundaries themselves fade away and new synergetic 
combinations can be formed (Gibbons et al, 1994). Knowledge that is transferred to new 
fields is more likely to be method-centred rather than subject-centred. While historiographic 
accounts only highlight a tiny fraction of such migrations, a statistical analysis of the 
publication archives can bring out correlations and connections which may throw light on the 
evolution of fields, for example, it can identify emerging areas and which fields they draw 
upon. 
Migration of authors between knowledge domains has been described by the term ‘cognitive 
mobility’, first introduced by Wagner Dobler (see, e.g., Wagner Dobler, 1999). As cited 
earlier, this can result in spectacular bursts of creativity in science and emergence of 
completely new directions in fields. Cognitive mobility can be measured by tracking the 
institutional or geographical movement of a scientist, say from one department to another 
with a different specialization, or through detailed surveys. However, a more reliable and 
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complete indication can be obtained from the disciplinary orientation of papers authored at 
different points of time by the same scientist. In effect it is equivalent to analyzing the 
archives of science. The shortcoming is that it cannot incorporate all the informal aspects than 
can be brought out in surveys. To the best of our knowledge, a complete statistical analysis of 
disciplinary mobility has not been done so far, possibly due to the fact that it is a non-trivial 
task to extract such data from publication records. 
An interesting question follows as to what are the deterrents to mobility? One deterrent is the 
barrier caused by the different forms of discourse, language or ontology, different 
communication fora such as journals and conferences, and forms of socialization and 
acculturation within each discipline. The divide is larger the more disparate the content and 
context of the disciplines. This should make it easier for an individual to migrate to a 
neighbouring field or subfield. In other words, it is possible that the ease of ‘cognitive 
mobility’ between scientific fields can be used to define a structure of proximal relationships 
between the fields. This forms a novel way of mapping a network of scientific fields in 
addition to existing methods using co-authorship, co-citation or co-referencing. In the next 
section, we look briefly at the existing work related to mapping in bibliometrics. 

Mapping and Visualization in Bibliometrics 
The objectives of drawing bibliometric maps have varied together with the underlying method 
for their construction. In addition to co-citation of authors, journals, documents, other 
similarity measures have been used for connecting these entities such as bibliographic 
coupling and direct citation. The relative usefulness or accuracy of these measures has also 
been studied. The earliest reference to mapping in terms of co-word analysis was in Callon, 
Courtial and Rip (1986). Some illustrative examples of mapping are the early work of 
Small(1973, 1994, 1999) where co-citation clustering was defined and used in the software 
SCI-Map to create document clusters that reflected the topics in the AIDS literature and links 
to other topics. In a later work, (Small 2010) the interdisciplinarity of co-citation links was 
explored by looking at links between document clusters in disparate categories of journals. 
Author co-citation was used to map information science (White and McCain, 1997). 
Pathfinder networks were used in mapping (White, 2003) and animation (Chen et. al , 2002). 
Journal to journal citation networks were used in Chen (2008). At a macro scale, Boyack, 
Klavans and Borner (Boyack, et al. 2010) mapped over 7000 journals in the Science Citation 
and Social Science Citation Indices using several different similarity measures between the 
journals to provide a bird’s eye view of the interconnectedness of today’s science and social 
sciences.  They found Biochemistry to be the most interdisciplinary subject. Leydesdorff, et al 
(2006, 2008a, 2010a, 2010b) have mapped journals, patents, Scopus journals and Arts and 
Humanities. One of the observations made by Leydesdorff is that co-classification is not as 
good a basis for mapping compared to co-citation for patent mapping. Dynamic animations of 
maps have also been developed by Leydesdorff (2008b). While not a comprehensive review, 
we have tried to illustrate different contexts and approaches to mapping in bibliometrics. 
In a slightly different context, networks of terrorist organizations have been obtained using 
name co-occurrences (Basu, 2005). Maps have also been drawn in an interdisciplinary context 
to analyze the editorial content of Nature and Science using co-word analysis (Waijer, et al., 
2010).  
In almost all the cases cited here, the similarity measures used have been based on the 
reference lists in documents. Each similarity measure is ultimately derived from the citation 
process, except in the cases where word co-occurrence has been used.  
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Data & Methodology 
In this paper, by looking at a large number of migrations over a long time span, and by 
examining the scatter of migrations against affinity, we have tried to see under what 
conditions migration frequency reflects the affinity between fields of mathematics, and when 
it can be used to map a scientific field. The basic data was collected from Mathematical 
Reviews for 17 years (1959-75) listing more than 300,000 journal papers. (The term ‘field’ is 
used in the same sense as subfield in the rest of the paper). The first author of each paper was 
noted as well as all the papers written by the same author. Every event where an author wrote 
two successive papers in fields with different classifications was taken as an instance of 
migration. If the paper has more than one classification category, then the first one is taken as 
the primary one.  The data consists of bidirectional migrations between 39 subfields with 
more than 3000 papers each. Smaller areas that contributed less than 1% to the literature 
(total<10%) were dropped.  The total number of transitions between fields numbered 66656, 
while the number of self migrations (two successive papers in the same field by an author) 
was 79333. Only the first author of a paper has been considered in counting migrations. The 
39 fields of Mathematics in the data are shown in Table 1, which gives the number of in-
migrations, out-migrations and self-migrations (where two successive papers by the same 
author are in the same field). The balance of migrations shows the net difference between in 
and out migrations, and is positive for fields that have gained author contributions from other 
fields through migration and negative for fields that have had a net loss of author 
contributions.  

Table 1: Fields in Mathematics, with number of in-migrations and out-migrations of authors: 
Self-migrations indicate two successive papers in the same field. 

Field In 
Migrations 

Out 
Migrations 

Self 
Migrations 

Balance of 
Migrations 

1 History and Biography 1071 794 754 277 
2 Logic and Foundations 764 692 949 72 
5 Combinatorics 3878 4172 3658 -294 
6 Order, Lattices, Ordered Algebraic Structures 1379 1204 1293 175 
10 Number Theory 996 985 2734 11 
14 Algebraic Geometry 2140 1790 1816 350 
15 Linear and Multilinear Algebra; Matrix Theory 1052 1104 832 -52 
16 Associative Rings and Algebra 2052 2033 3188 19 
20 Group Theory 1498 1547 628 -49 
22 Topological Groups, Lie Groups 867 839 1449 28 
26 Real Functions 1915 2037 3913 -122 
28 Measure and Integration 1301 1228 875 73 
30 Functions of a Complex Variable 1503 1619 524 -116 
32 Several Complex Variables and Analytic Spaces 1574 1621 935 -47 
33 Special Functions 2050 2257 3267 -207 
34 Ordinary Differential Equations 1016 850 1074 166 
35 Partial Differential Equations 864 899 781 -35 
41 Approximations and Expansions 3085 3298 4459 -213 
42 Fourier, Abstract Harmonic Analysis 3485 3369 3900 116 
46 Functional Analysis (from 1973) 1619 1567 997 52 
47 Operator Theory 1558 1665 1400 -107 
50 Geometry 3644 3405 2599 239 
53 Differential Geometry 1023 1162 1117 -139 
54 General Topology 1686 1881 3839 -195 
55 Algebraic Topology 1828 1946 2541 -118 
57 Topology, Geometry of Manifolds (1959-72) 1061 1214 1203 -153 
60 Probability Theory and Stochastic Processes 3163 3186 4265 -23 
62 Statistics 2208 2133 4406 75 
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65 Numerical Analysis 3401 3325 3736 76 
68 Computing Machines, 1973: Computer Science 1137 814 721 323 
73 Mechanics of Solids 837 947 1607 -110 
76 Fluid Mechanics (from 1973: plus Acoustics) 1190 1277 1554 -87 
78 Optics, Electromagnetic Theory 666 810 483 -144 
81 Quantum Mechanics 1535 1657 3852 -122 
82 Statistical Physics, Structure of Matter 1103 1001 875 102 
83 Relativity 786 781 1174 5 
90 Economics, Oper. Res., Programming, Games 2239 2002 2503 237 
93 Systems, Control 1570 1504 1569 66 
94 Information & Commun, Circuits, Automata 1912 2041 1863 -129 
Total 66656 66656 79333 0 
 
In the first instance we created a network map using UCINET (Borgatti, 2002) with a 
similarity measure taken as the migration data between fields. The map is clustered into 
components using the inbuilt program ‘HiComp’ (Figure 1). The hierarchical tree is shown in 
Figure 2. Results and analysis of the clusters are given in the results section. We found that 
the separation of fields into coherent groups was not entirely satisfactory. The cluster diagram 
indicated that the cluster structure emerges at higher values of migration (Figure 3). In an 
independent verification, it was found that migration grew with affinity between fields, but 
only beyond a certain threshold of affinity. Affinity is defined in terms of the co-occurrence 
frequency of field classification terms (Wagner Dobler, 1999). The graph of affinity vs. 
migration is showed in Figure 4, which shows that, at low levels of affinity, migration is not a 
good indicator of similarity. The second network map (Figure 5) is created by applying a 
suitable cut-off value for lower values of migration, to restrict it to the range where it 
adequately reflects affinity between the fields. We use centrality measures used in social 
network analysis to bring out the position of each field in the network of mathematics. 

Results 
Some general observations can be made with regard to migrations by authors between 
disciplines in mathematics. It was usually found that an author’s productivity increased 
following migration. Transitions could be bi-directional; however it was rare for an individual 
author to be part of a reverse transition. The results of mapping using the full adjacency 
matrix of migrations are shown in Figure 1, where each field appears as a node in the 
network. The size of a node reflects the degree of connection to other nodes. Frequency of 
migration between areas is indicated by the thickness of the links between fields.  
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Figure 1. Initial network of fields using the full data on migrations (see Table 2 for Field names) 

 
The Degree and Betweenness Centrality measures of the nodes have been computed and are 
shown in the Table 2. Degree Centrality tracks the number of transitions for a given field. 
Fields with high values of normalized degree centrality (>8) are Functional Analysis, 
Numerical Analysis, Operator Theory, Probability Theory, Ordinary and Partial Differential 
equations. Betweenness Centrality reflects how many paths between pairs of nodes pass 
through the given node. Normalized betweenness centrality is high (>10) for Partial 
Differential Equations, Operator Theory, Numerical Analysis, Economics, Systems and 
Control, Ordinary Differential Equations, Associative Rings and Algebras. 
The corresponding cluster diagram is shown in Figure 3. It shows that clusters emerge only at 
higher values of migration (only migration levels higher than 180 transitions shown here). 

Table 2: Degree and Betweeness Centrality based on the full data of migration 

 OutDegree InDegree NrmOutDeg NrmInDeg FlowBet nFlowBet 

 
------------ -----------

- 
------------ ------------ -----------

- 
------------ 

1 History and Biography 794 1071 2.13 2.873 19.375 1.378 

2 Logic and Foundations 985 996 2.642 2.672 7.828 0.557 
5 Combinatorics 1790 2140 4.802 5.741 24.983 1.777 

6 Order, Lattices, Ordered Algebraic Structures 1104 1052 2.962 2.822 10.808 0.769 

10 Number Theory 2033 2052 5.454 5.505 115.862 8.241 

14 Algebraic Geometry 692 764 1.856 2.049 4.687 0.333 
15 Linear/ Multilinear Algebra; Matrix Theory 1547 1498 4.15 4.018 5.181 0.368 

16 Associative Rings and Algebra 839 867 2.251 2.326 210.498 14.971 
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20 Group Theory 2037 1915 5.464 5.137 9.501 0.676 
22 Topological Groups, Lie Groups 1228 1301 3.294 3.49 119.099 8.471 
26 Real Functions 1619 1503 4.343 4.032 13.75 0.978 

28 Measure and Integration 1621 1574 4.348 4.222 14.322 1.019 

30 Functions of a Complex Variable 2257 2050 6.055 5.499 68.25 4.854 

32 Several Complex Variables & Analytic 
Spaces 

850 1016 2.28 2.725 11.31 0.804 

33 Special Functions 899 864 2.412 2.318 30.171 2.146 
34 Ordinary Differential Equations 3298 3085 8.847 8.276 145.525 10.35 

35 Partial Differential Equations 3369 3485 9.038 9.349 665.954 47.365 

41 Approximations and Expansions 1567 1619 4.204 4.343 104.577 7.438 

42 Fourier, Abstract Harmonic Analysis 1665 1558 4.466 4.179 10.681 0.76 
46 Functional Analysis (from 1973) 4172 3878 11.192 10.403 63.006 4.481 

47 Operator Theory 3405 3644 9.134 9.775 348.338 24.775 

50 Geometry 1162 1023 3.117 2.744 18.485 1.315 

53 Differential Geometry 1881 1686 5.046 4.523 25.966 1.847 
54 General Topology 1946 1828 5.22 4.904 19.992 1.422 

55 Algebraic Topology 1214 1061 3.257 2.846 10.104 0.719 

57 Topology, Geometry of Manifolds (1959-72) 1204 1379 3.23 3.699 109.293 7.773 

60 Probability Theory and Stochastic Processes 3186 3163 8.547 8.485 3.914 0.278 
62 Statistics 2133 2208 5.722 5.923 45.131 3.21 

65 Numerical Analysis 3325 3401 8.919 9.123 215.195 15.305 

68 Computing Machines, 1973: Computer 
Science 

814 1137 2.184 3.05 15.612 1.11 

73 Mechanics of Solids 947 837 2.54 2.245 14.277 1.015 

76 Fluid Mechanics (from 1973: plus Acoustics) 1277 1190 3.426 3.192 10.932 0.778 
78 Optics, Electromagnetic Theory 810 666 2.173 1.787 122.945 8.744 

81 Quantum Mechanics 1657 1535 4.445 4.118 6.803 0.484 

82 Statistical Physics, Structure of Matter 1001 1103 2.685 2.959 107.533 7.648 

83 Relativity 781 786 2.095 2.108 4.986 0.355 
90 Economics, Oper. Res., Programming, Games 2002 2239 5.37 6.006 178.255 12.678 

93 Systems, Control 1504 1570 4.035 4.212 152.731 10.863 

94 Information & Commun, Circuits, Automata 2041 1912 5.475 5.129 8.784 0.625 

 
The nodes in Fig. 1 are clustered by degree of connectivity, the corresponding clusters and 
field names being given in Table 3.  There are essentially 6 clusters, named as Pink, Red, 
Black, Blue1, Blue2, Blue3 and two isolated nodes, Grey. The central core of the network 
consists of several well connected Pink nodes, surrounded by less connected nodes.   
We note from Table 3 that some expected associations between fields do not emerge in the 
clusters, a straightforward example being Probability (Node 60), which is not in the same 
cluster as Statistics (Node 62), even though there is a strong link between them (see Fig.1). 
Information and Communication (Node 94) is not clustered with Computer Science (Node 
68). There is no reason why History and Biography (Node 1) should be placed in the Red 
Cluster along with Groups (Node 20) Geometry (Node 53) and Topology (Nodes 22, 54), to 
mention just a few examples. The corresponding hierarchical tree and cluster diagrams are 
shown in Figures 2 and 3. Only the Blue3 cluster appears to be one related to the Physics 
disciplines, with the exception of Relativity (Node 83) which appears as a single node. 
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Table 3: Fields in Mathematics clustered by total migrations. 

Pink 
26 Real Functions 
30 Functions of a Complex Variable 
34 Ordinary Differential Equations 
35 Partial Differential Equations 
42 Fourier, Abstract Harmonic Analysis 
46 Functional Analysis (from 1973) 
47 Operator Theory 
60 Probability Theory and Stochastic Processes 
65 Numerical Analysis 
Blue 1 
2 Logic and Foundations 
6 Order, Lattices, Ordered Algebraic Structures 
68 Computing Machines, 1973: Computer Science 
Grey1 
16 Associative Rings and Algebra 
Red 
1 History and Biography 
20 Group Theory 
22 Topological Groups, Lie Groups 
28 Measure and Integration 
53 Differential Geometry 
54 General Topology 
Grey2 
83 Relativity 
Black 
5 Combinatorics 
10 Number Theory 
15 Linear and Multilinear Algebra; Matrix Theory 
33 Special Functions 
41 Approximations and Expansions 
62 Statistics 
90 Economics, Operations Research, Programming, Games 
93 Systems, Control 
94 Information & Communication, Circuits, Automata 
Blue2 
14 Algebraic Geometry 
32 Several Complex Variables and Analytic Spaces 
50 Geometry 
55 Algebraic Topology 
57 Topology, Geometry of Manifolds (only 1959-72) 
Blue 3 
73 Mechanics of Solids 
76 Fluid Mechanics (from 1973: plus Acoustics) 
78 Optics, Electromagnetic Theory 
81 Quantum Mechanics 
82 Statistical Physics 
 
The hierarchical tree obtained from our data using the inbuilt function in UCINET is shown in 
Fig.2. Field labels are on the left. Fig.2 indicates that a branched tree structure may reflect the 
structure of mathematics better than a cluster structure. One may conjecture that this could be 
due to the relatively higher degree of logical connectivity between sub-disciplines of 
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mathematics, as compared to other fields of science. If a branched structure exists in the 
linkage pattern or association between fields, it may not be optimal to use clustering, which 
tries to assign a node uniquely to a cluster, when in fact it may act as a bridge between 
clusters. 
 

 
Figure 2. Hierarchical Tree Structure of fields in Mathematics (Field labels on left) 

 
The corresponding cluster diagram is shown in Figure 3. It shows that well separated clusters 
emerge only at higher values of migration (only migration levels higher than 180 transitions 
shown here). The reason for this is obtained on examining the scatter of migrations with 
affinity between fields (Fig. 4) reproduced from Wagner Dobler ((1999). It is seen that when 
the affinity is low, migration is erratic. However at higher values of affinity there appears to 
be a good correlation between affinity and migration. 
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Figure 3: Emergence of structure in the association between fields at higher values of migration.  

 
 

 
Figure 4: Scatter diagram of Affinity (X-axis) vs. Migration (Y-axis) showing poor correlation at 

lower levels but increasing migration with affinity at higher values. 
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Figure 4 shows clearly that the data on migration can be used as an index of field affinity or 
association only at higher values of migration. Values below some threshold add noise to the 
information content in the migration data. Keeping this in mind, the network is re-drawn after 
taking a threshold, eliminating links between areas with less than 165 migrations over a 
period of 17 years (Fig.5). The threshold was selected to include as many fields as possible, 
without vitiating the structure of the network. At higher levels of the threshold, areas start to 
get de-linked from the main network.  
 
 

 
Figure 5. Labelled diagram of network of mathematics obtained from migration data(>165) 

The labelled network structure of fields in mathematics at migration levels higher than 165 
shows the disciplinary nuances within the field. Fields shown at the top left hand corner 
become disconnected from the network at this level. Wherever the labels could not be placed 
without obscuring details in the network, they are mentioned in the text at the top centre. The 
nodes in Fig. 5 are sized according to the betweenness values based on the modified data. It 
may be noted that there have been significant changes to the centrality values of different 
fields. Functional Analysis now has a central position with the highest betweenness centrality. 
Fig. 5 shows that Functional Analysis (46) holds the other areas of mathematics together as a 
fulcrum, even though it is not directly connected to all of them. The areas relating to 
Topology, General Topology (54), Topology and Manifolds (57), Algebraic Topology (55), 
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are connected as a group. Topological and Lie Groups (22) is independently connected to 
Functional Analysis. The topology group is linked to Differential Geometry, which in turn is 
linked to Geometry along one branch and Relativity (83), Quantum Mechanics (81) and 
Statistical Physics (82) along the top right hand branch.  
The lower left branch connects Logic and Foundations (2) to Computer Science (68), 
Information and Communication (94) and Probability and Stochastics (60).  
Numerical Analysis is a hub that connects Operator Theory (47) and Ordinary and Partial 
Differential Equations (34 and 35). The last is connected to Solid and Fluid Mechanics (73 
and 76). Economics (90) is another hub that connects to Numerical Analysis(65) 
Statistics(62), Systems and Control(93) and Information and Communication(94). Statistics 
also connects to Probability and Stochastics as expected. On the left of Figure 5, which has 
the more formal branches of mathematics, Information is connected to Combinatorics (5) 
which is connected to Number Theory (10) and Group Theory (20). The last is connected to 
Associative Rings (16) and Order Theory and Lattices (6). Close to Functional Analysis on 
the left are Complex Variables (30 and 32) and the areas Measure and Integration (28), 
Fourier Expansions (42) and Approximation and Expansions (41). History and Biography (1) 
which is likely to draw authors from all fields does not fall onto any branch, as do some other 
areas. 

Discussion 
We conclude that migration or cognitive mobility appears to give a fairly rational map for the 
discipline of mathematics, after the application of a suitable threshold. Areas which overlap 
with physics are on the upper branch while mechanics links to partial differential equations as 
expected. Similarly the connections to Economics and Probability are aligned to expectations 
as well as the links to Combinatorics. If a branched structure exists in the linkage pattern or 
association between fields, it may not be optimal to use clustering, which tries to assign a 
node uniquely to a cluster, when in fact it may act as a bridge between clusters. Some form of 
threshold may in general be required to bring out features of maps by excluding extraneous or 
random connections that may occur in the data (see, e.g., Basu, 2005).  Our hypothesis that 
migration should reflect affinity between fields was based on the behavioural Zipf ‘principle 
of least effort’. Since movement to another field of research involves a cost to the scientist, it 
is likely that more migrations will take place between neighbouring fields with lower 
transition costs. Low frequency migrations may reflect idiosyncratic transitions rather than 
statistically reliable trends, and need to be eliminated. Exceptions to the above may happen 
when migrations take place between unrelated areas, for example when a method or technique 
from one area is used in another. In such a case, migration may not reflect affinity between 
fields.  
The correlation between migration and affinity, and the range where this holds has been 
independently validated in our study. It  would be interesting to see if similar thresholds are 
required in drawing maps based on citations, and what is the rationale for their use. It has 
been observed by Small (2009) that beyond some critical threshold giant components emerge 
in the maps. It may therefore be necessary to consider applying thresholds in order to get 
meaningful groups in the mapping exercise. 
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