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Abstract 
We are investigating the manner in which different scientific fields differ in their communication cultures.  Our 
research methodology combines quantitative (graph-theoretic) and qualitative (ethnographic) techniques, which 
mutually inform each other. In this paper, we present the results of a case study on the identification and 
classification of scientific collaborations based on structural patterns in co-authorship networks. We investigate 
three co-authorship networks in specialised subfields of organic chemistry and physical chemistry using an 
information-theoretic clustering algorithm by Rosvall et al. to extract the modular structure of the networks and 
thereby investigate the mesoscopic structures of these networks.  The clusters found mostly correspond to 
hierarchically organised research groups or multi-centre research networks. Based on the co-author links 
between these clusters we analyse group and network interactions, using interviews with participants from the 
fields in question to inform our interpretation. Structurally one can distinguish two broad classes of linking 
patterns between clusters: 'exclusive' connections where a single node (author) connects two clusters, and 'many-
to-many' connections where substantial fractions of the nodes of both clusters are involved.  Within these broad 
classes one can find further subclasses that correspond to typical collaboration and mobility events. 

Introduction 

Scientific fields differ in their intellectual and social organisation, and consequently in their 
communication practices (Whitley 2000, Cetina 1999, Fry & Talja 2007). Investigating these 
differences via ethnographic studies alone is insufficient because evidence is gathered from 
only a small, local fraction of scientists in a field. At the opposite end of the scale, large sets 
of publication data promise access to aggregate behavioural patterns of a research community.   
However, because of the standardization of formal scientific publishing across science, a 
bibliometric approach alone may fail to uncover underlying, field specific differences in 
scientific communication practices. In our comparative research into field-specific scientific 
communication cultures we combine qualitative ethnographic field studies with structural 
analysis of publication networks.  In this manner, we can use small-scale, nuanced evidence 
from field studies to inform our interpretation of large-scale publication networks and 
investigate to what extent field specific practices are reflected in structural features of 
publication networks. This evolves a tradition of close-up analysis of scientific networks 
started by Crane’s work (1972) on invisible colleges, which was taken up more recently by 
Zuccala (2004). 
 
Our specific concern is to understand the relevance and meaning of certain network artefacts 
(such as co-author links and inter-citations) in the context of specific scientific fields, and to 
discover how they relate to concepts of community, and to communication practices that we 
observe in our field studies.  The field specificity of global bibliometric indicators such as 
citations and journal impact factors (Moed 1985, Althouse 2008), the number of co-authors 
on a paper (Liberman & Wolf 1998) or percentage of self-citations (Snyder & Bonzi 1998) is 
well known, although the delineation of scientific fields, and hence the appropriate 
normalisation of such measures for comparisons across scientific fields remains problematic 
(Zitt 2005, Adams 2008). Recently, the characteristics of co-author networks as social 
networks have been highlighted (Kretschmer 1994, Newman 2001). With other social 
networks they share global topological properties such as small world-property, clustering, 
and assortative degree mixing as well as a long-tail degree distribution and a scaling law of 
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clustering coefficient (Sen 2006). In the recent surge of work on the analysis of complex 
networks, and in particular on clustering algorithms to extract the modular structure of real 
world networks, co-author networks rank among the most prominent examples (e.g. Radicchi 
et al 2004, Newman 2004, Palla 2005). Most work in this area does not focus on analysis of 
network features specific to a scientific field.  Instead, existing work uses co-author networks 
as a way to demonstrate algorithmic advances by comparing global network properties of co-
authorship networks to other types of ‘real world’ networks (such as transportation or 
biological networks). 
 
Those works in information science and bibliometrics that investigate the characteristics of 
co-author networks in specific fields from a social network perspective tend to focus on 
global topological network properties, or on the position and ranking of individual actors 
within the network, see e.g. Kretschmer (2004), or Acedo (2006), and Liu (2005) for an 
exception that at least touches on the group level organization. However, as Guimera et al. 
(2007) argue, for modular networks global properties fail to capture important structural and 
functional distinctions between networks. To discover those one has to investigate the 
mesoscopic structure of networks that takes into account module interconnectivity and 
differences in connectivity patterns between nodes based on their structural position in the 
network. Accordingly the study presented in this paper focuses on the mesoscopic level of 
analysis - that is we analyze connectivity patterns between modules of closely interconnected 
authors in co-authorship networks, in order to explore the field-specificity of community 
structures and communication patterns. 
 
Early on in our research we found interpretation of co-authorlinks between co-author groups 
as indicators of collaboration between those groups to be problematic: we realised that in the 
weakly interconnected field that we were studying, co-authorship links between groups did 
not indicate direct inter-group collaboration but were just residues of the fact that individuals 
migrated between groups on their career path, e.g. from phd student to postdoc, an 
observation made also by Nepusz (2008). Hence, to understand the different types of 
connectedness that co-author links between groups represent, we need to classify such linking 
patterns, and to match them with different types of collaboration or exchange. In this paper we 
present a qualitative validation of this approach based on visualization of graph structures and 
interpretation of various network metrics. 
 
In our research, qualitative and quantitative approaches are closely interlinked. The study 
presented here is exemplary for the way in which qualitative understanding of research 
practices and context help us to evaluate quantitative outcomes, and how quantitative results 
guide our attention for further qualitative study. Take for example the issue of analyzing the 
community structure of social networks that is an important aspect of our research into 
communication practices. As described further below, a wide variety of clustering algorithms 
exist that will all deliver quite different partitions of a network. To decide whether clustering 
provides us with a research unit that is useful for the analysis of scientific communication and 
interaction patterns of a research field, we need validation and interpretation of those clusters 
in the context of this specific field (Caruana 2006, Schaeffer 2007). Given such a clustering 
we can then look at the network of clusters that shows the interactions between author groups 
and direct our qualitative research efforts at further understanding those interaction patterns – 
that is to uncover those motivations and processes that underlie the structural patterns 
(Lievrouw 1990, Zuccala 2004).  
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Methodology 

To develop a deep qualitative understanding of communication practices in different fields of 
chemistry we are conducting ethnographic field studies in selected research groups.  We will 
call these groups seed groups in the remainder of this paperi. A precondition for selecting 
such a group for our study is that it is a relevant recognized player in some specialised field of 
research. The publication data sets used in this study represent those research specialties in 
which our seed groups are actively engaged.  As a result, for each data set we have access to 
informants with whom we can check the interpretation and significance of features that we 
detect in our network analysis.  

Data 

We have obtained our data sets from Web of Science (WoS, Thomson Reuters) using a lexical 
query (see appendix) to capture the literature published in small specialities within organic 
chemistry (Field B) and physical chemistry (Field A and C).  For the construction of the co-
author networks we have omitted those (transient) authors that have published only a single 
paper within the data set. The original number of authors and the reduced number of authors 
in the co-author networks are given in table 1.  

Table 1. Data Sets 

 Field A Field B Field C 
Sub-discipline Physical chemistry Organic chemistry Physical chemistry 
Time span 1991-2008 1991-2008 1987-2008 
Average # of authors 
per paper (median) 

4.0 (4) 3.3 (3) 3.8 (3) 

# authors 7,823 20,683 47,471 
# authors (reduced) 2,241 7,472 18,440 
# authors in giant   
(relative size) 

2,014  (89.9%) 6,660 (89.1%) 17,269 (93.6%) 

 
We note that the average number of authors on a paper is lower in organic chemistry than in 
the two data sets from physical chemistry.  
 
All three networks have a giant component that includes about 90% of the co-authors in the 
networkii. Below we show a temporal analysis of the evolution of author numbers in the data 
set and the growth of the relative size of the giant component by slicing the data set into the 
following three chunks of increasing size: 1991-1996, 1991-2002, 1991-2008 (Fields A,B), 
and 1987-1993, 1987-2000, 1987-2008 (Field C). Figure 1 shows that the largest growth of 
the relative size of the giant component happens when moving from 6 years (Fields A, B), 
respectively 7 years (Field C) to 12 years (Fields A, B), respectively 14 years (Field C). As 
the absolute number of authors in the network doubles or even triples in the last time step, the 
relative size of the giant component seems to reach saturation (clearly for Field C, presumably 
also for Fields A,B), indicating that the time window is sufficient for all basic relations 
between actors to have developed (Newman 2001a, Barabasi 2002).  
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Figure 1. Accumulative temporal evolution of co-author numbers in network (large diagram) 
and of relative size of giant component (inset). 

Procedure 

The nature of the node ‘communities’ that are extracted from a network depends on the 
clustering algorithm that is used. Some clustering procedures are hierarchical by design, so 
that they offer a hierarchy of groupings, starting from single nodes to the total set. Newman 
(2004) shows how his algorithm that is not hierarchical by design can still be used to 
repeatedly drill down into a large, 56,000 author data set, first detecting clusters at the level of 
entire fields (such as high-energy physics, or condensed matter physics), then smaller 
specialities, and eventually after a fourth iteration, clusters corresponding to research groups 
(such as his own with 28 members). Other algorithms have a very restrictive definition of 
clusters as very tight groupings of nodes and therefore produce clusters with little variation in 
group internal structures, e.g. the concept of k-cliques in Palla et al (2005). See Fortunato & 
Castello (2007) for an informative overview on recent clustering algorithms for the extraction 
of community structures from complex networks and the issue of implied community 
definitions.  
 
Given the co-author networks as described above, we use an information-theoretic clustering 
algorithmiii for undirected, integer valued networks (Rosvall & Bergstrom 2007) to partition 
the co-author network into clusters of closely interconnected co-authors. We have chosen this 
algorithm because we have found that it extracts very well what Seglen (2000) has called  
'functional research groups'  – that is, those research performing units that not only contain a 
collocated group of researchers in a laboratory led by a principal investigator (PI), but also 
closely cooperating domestic or international colleagues and visiting scientists. We represent 
the results of this clustering as an author-level network where nodes represent individual co-
authors and where the cluster membership of nodes is indicated by the colouring of nodes. We 
will focus here on the study the fine structure of group-to-group co-authorship links. 
 
For further analysis we extract the giant component of the co-author network. We use pajek 
(Batagelj & Mrvar 2003) to load the network, to partition it into strongly connected 
components, and to extract the largest partition, i.e. the giant component. Then, for each field, 
our analysis proceeds as follows: 

 We use pajek to extract the cluster that includes the PIs of our seed groups. Using 
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standard network centralization indices (degree, closeness, betweenness) calculated 
with pajek, we compare the internal structure of selected clusters. We validate the 
interpretation of these clusters with our informants.  

 For analysis of the linking patterns between clusters we extract the neighbourhoods of 
the seed group from the original giant component – that is those clusters that are 
linked by at least one co-author link to the cluster of the seed group.  By visualizing 
each neighbour cluster and its connection pattern with the seed cluster we then 
characterize its visually most obvious features.  

 We ask our informants to scan through the list of neighbours (highlighting the most 
productive authors in each cluster) and to tell us about their scientific relationship to 
the neighbouring cluster and how the co-author links can be explained. Typical 
scenarios and structures emerged that we describe in the next section.  

Results 

Interpretation of Clusters 

We validated with the PIs of the three seed groups that the cluster extracted from the co-
author network captures their immediate, collocated research groups (researchers of various 
seniority levels from PhD students over postdocs to their own deputies or subgroup leaders) 
plus relevant external cooperation partners (from their own institution, or national and 
international cooperations). The PIs were slightly surprised that some individuals were 
subsumed into their cluster and not independently represented. This particularly seems to be 
the case for those individuals that have a strong institutional identity distinct from the 
academic group of the PI – as is the case for research group leaders from industrial 
companies. Note that our data sets capture only publication activity in very specialised areas 
of research – most PIs and their groups in our field study engage in several, non-related 
research areas. Consequently the representation of research groups by co-author clusters in 
this study is only a partial, as it includes only those functional group members involved in the 
specific area of research targeted by our data set. 
 
The seed groups of the PI-led research groups all show a centralized hierarchical structure 
with the most productive author in the centre (figure 2). They differ considerably in size, but 
each seed lab cluster has a size well above the average size of clusters extracted from the giant 
component (see table 3 below).  The degree, closeness, and betweenness centralization indices 
of the seed group clusters indicate a high level of centralization (see table 2). The seed lab of 
field B scores highest, confirming the visual impression of a distinct star-like structure. 
Possible explanations are the lower average number of co-authors on papers in this field that 
reduces cross-links between co-workers of the PI, as well as lack of a subgroup structure in 
the organization of the group.  
 
We further find that some of the clusters show a quite different internal structure, as can be 
seen from a comparison of figures 2 and 3. In figure 3 we show two exemplary clusters from 
field C. They include several central nodes none of which clearly dominates the network. The 
clusters are still hierarchically organized in the sense that some nodes are clearly larger than 
most other nodes, and that those smaller nodes are mainly linked to the large nodes. Their 
centralization indices are substantially lower than those for the seed group clusters, 
confirming this visual impression. From investigation of institutional affiliations given in the 
underlying WoS records and participant feedback we identify (as indicated in the figure 
caption) one of these clusters as an international collaboration network, and the other as a 
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network of closely cooperating colleagues from a major research institution in this specialty 
area. 

 
 

 

 

 

Figure 2. Seed group clusters with centralized internal structure (top left: field A, top right: field 
B, bottom: field C). Nodes represent authors; node sizes the number of papers they have 

authored. Links represent co-author links, thickness of links the number of co-author events. 

 

 

 

 

 

 

 

 

 

Figure 3. Examples from field C for clusters that correspond to multi-centred networks. Left: 
international research network (predominantly Japanese, Korean, and French) (C1), right: 

cooperative network of a research Institute (C2). Nodes represent authors; node sizes the 
number of papers they have authored. Links represent co-author links, the thickness of links the 

number of co-author events. 

Table 2. Centralization indices of selected clusters 

 Seed group A Seed group B Seed group C Cluster C1 Cluster C2 

degree 0.67 0.88 0.79 0.41 0.44 

closeness 0.77 0.91 0.80 0.45 0.50 

betweenness 0.43 0.86 0.79 0.21 0.31 

Fine structure of cluster-to-cluster linking patterns 

Next we extract the neighbourhood networks of each of the seed labs; that is, those clusters 
that have one or several co-authorship links between any of their authors and any of the 
authors of the seed group cluster. The number of clusters in the neighbourhood networks of 
the seed labs in field A and B are comparable in size, but the neighbourhood network of the 
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seed group in field C with 315 neighbour clusters stands out in comparison – the total number 
of authors in this neighbourhood (including the seed cluster) corresponds to almost 30% of 
the entire author population of the giant component (see table 3).  

Table 3. Clusters and Neighbourhood Networks 

 Field A Field B Field C 
Sub-discipline Physical 

chemistry 
Organic 

chemistry 
Physical 

chemistry 
Time span 1991-2008 1991-2008 1987-2008 
# clusters in giant 173 573 1,190 
Average # of authors in cluster (in 
giant) 

11.6 11.6 14.5 

# of authors in seed group cluster 21 43 159 
# clusters in seed group 
neighbourhood 

14 18 315 

# of authors in neighbourhood 
(percentage of total authors in giant) 

 
296 (14.7%) 

 
590 (8.9%) 

 
4,929 (28.5%) 

 
On visual inspection of the linking patterns between the seed clusters to their neighbour 
clusters we can identify two major types of structural patterns: ‘exclusive’ connections where 
a single author who is either member of the neighbour cluster or the seed cluster connects two 
clusters, and 'many-to-many' connections where substantial fractions of the nodes of both 
clusters are involved. Whereas the seed group in field A has only ‘exclusive’ type connections 
to its neighbours, the seed labs in fields B and C show both connection types. The observation 
for seed group A matches well with the fact that its PI bemoans a lack of inter-group 
collaboration in this specialty. He observes that he and his colleagues focus on building 
independent research profiles in this area and avoid formal cooperation.  
 
Figure 4 shows a variety of ‘exclusive’ and ‘many-to-many’ type connections between the 
seed group cluster in field C and a subset of its neighbour clusters. We distinguish two 
structural subtypes of exclusive connection types: 1-1 connections and 1-to-many. We also 
distinguish two structural subtypes of ‘many-to-many’ connections: those connection patterns 
that include direct PI-PI co-author links and seem to have a rather deep penetration into the 
cluster, and those that involve only interaction with a subgroup of the seed cluster but not (or 
only minimally) the PI. We match these connection patterns to real world scenarios from the 
accounts of our informants about these relationships in table 4. Numbers in parentheses in the 
table identify the corresponding instances in the networks in figure 4. 
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Table 4. Linking patterns 

Pattern 
Type 

Definition Underlying Real World Scenarios 
(Examples from seed group field C) 

Exclusive 
1-to-many 

One single 
node connects 
two clusters 

Visiting scientist with links home into national research 
network (1) 

career migration (2)  
repeated instances of career migration (2b) 

career migration of now closely collaborating colleague (2*) 
1-off commissioned work (3)  

1-off cooperations on independent topics (3b) 
funded project collaboration of subgroup leader (7)  

Exclusive 
1-to-1 
“bridge” 

Two nodes, 
one from each 

cluster, are 
exclusively 

linked  

‘unauthorized’ collaboration by postdocs (4) 
provision of synthesis samples (5) 

exclusive cooperation by closely collaborating colleague (6) 

Many-to-
many 

interlinked 
node groups 
from each 

cluster 
participate in 

the connection 

intensive thematic and methodological international  (Swiss) 
cooperation for since PI’s postdoc time (8) 

very broad, thematic based, many faceted international (UK)  
cooperation (career migration, temporal exchange of 

postdocs and PhD students) (9) 
many faceted methodological international (Dutch) 

cooperation (10) 
cooperation on many topics due to complementary 

knowledge, joint PhD students and exchange of staff, many 
funded projects (11) 

PI colleague at same institute - intensive topical and 
methodological cooperation; much stronger informal 
cooperation than formal in form of publications (12) 

multi faceted cooperation with national institute, exchange of 
senior staff who bring along their networks (13) 

Many-to-
many 
(peripheral) 

interlinked 
node groups 
from each 

cluster 
participate in 

the connection 
with no or 

minimal PI-PI 
links 

Thematic cooperation, nurtured by EC funding, no exchange 
of PhD students; people come for measurements and leave 
again; disciplinary very distant (electrical engineers) (14) 
Seed group conducts measurement services to this group, 

only subgroup of instrument involved, institutionally 
supported by partner agreement between institutions, PI 

former postdoc in seed group (15) 
Russian institute, seed group is partially fused with this 

institute as several members are partially funded by seed 
group, repeated exchange of coworkers (16) 
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Figure 4. Selected instances of how the seed group (field C) connects to neighbouring clusters. A 
node represents an author, node size number of publications, node shade cluster membership, a 

link co-authorship, and link thickness number of joint publications. Top: exclusive type 
connections (dotted circles highlight involved nodes). Bottom: many-to-many type connections; 
left: with direct PI-to-PI links, right: without or with weak PI-PI link. The numbers given refer 
to the description of the underlying collaboration scenario derived from interviews (see table 4). 

Discussion 

We match topological co-author network features at the mesoscopic level of analysis to 
informants’ accounts, and thereby deliver an interpretation of these features and a validation 
of their significance. 
 
Specifically we observe that the basic research performing units in the specialties we are 
studying differ substantially in structure and composition. First, our seed labs and several of 
their neighbours expose the uni-centred hierarchical footprint of a PI-led group with its 
periphery (corresponding well to the functional research groups Seglen (2000) defined for his 
case study on microbiology). We speculate that differences between the physical chemistry 
and organic chemistry seed labs in the network centralization indices given in table 2 may 
point to sub-discipline specific differences. They seem to correlate with the field specific 
average number of co-authors per paper, but other factors, such as the organization of a group 
into subgroups, may also contribute. Secondly, we also find in all three fields multi-centred 
research clusters characterized by lower centralization indices. They correspond to multiple-
PI collaborations representing intra-institute, national, or international research networks.  
 
Our analysis of structural inter-cluster connection patterns and how they match to underlying 
real world scenarios (table 4) points to a fundamental difference between ‘exclusive’ 1-1 or 1-
many co-authorship links, and ‘many-to-many’ co-authorship links. These basic types imply 



Patterns of Collaboration in Co-authorship Networks in Chemistry - Mesoscopic Analysis and Interpretation 
 

773 

different forms of interaction and collaboration. The former are footprints of people moving 
between labs and of one-off cooperations involving sample exchange or measurement 
servicesiv. According to our informants’ accounts, migration events can take three forms: 1) 
reciprocal exchange between groups, 2) strategic training where a young researcher returns to 
his home lab after a postdoc stint at another lab, or 3) a non-symmetric career migration flow 
that reflects differences in reputation and resources of groups or research networks. Hence 
exclusive type inter-group connections constitute a group-level network of exchange of 
people, skill, material, and measurement services within a specialty.  The many-to-many 
connection patterns on the other hand correspond to substantial inter-group collaborations. By 
distinguishing between those two basic structural types we will be able to investigate and 
compare collaboration practices in scientific fields in two different dimensions.  
 
We expect that a key ingredient for distinguishing between collaboration scenarios beyond the 
two basic structural types is to identify node roles. PIs, sub-group leaders, collaboration 
partners in the periphery of a group, and migrating PhD students differ in their representation 
within the network if one takes node size, their structural position within the group, the 
strength of their binding to the group, and the distribution of their external links over all 
neighbour clusters into account. Further, the collaboration scenarios differ in terms of the kind 
of people involved. Hence it should be possible to infer the different roles authors have from 
their structural position in the network, and to use this information to further refine the 
identification of collaboration scenarios. Guimera et al. (2007) have suggested for complex 
modular networks a distinction between seven node roles. They distinguish between hubs 
with many module internal links, and non-hubs with few module internal links, and further 
subtypes of hubs and non-hubs according to the distribution of their links to module-internal 
and module-external nodes. Given such a categorization of nodes based on their structural 
characteristics, we can not only calculate and compare the distribution of node roles between 
our co-author networks, but also visualize their role specific connectivity patterns, and 
investigate the correspondence of those role specific patterns to collaboration scenarios. 
 
Finally, we point to a number of limitations of this study: we develop interpretations of 
structural features only from the context of a single research group in each field (the seed 
group). To avoid distortions, we plan to extend our qualitative field studies to include other 
groups in each field to check the interpretations we develop against other participants’ views. 
Secondly, our analytic method is getting calibrated in the research environment of certain 
fields in chemistry and physics. We believe that conceptually it can be transferred to other 
fields and disciplines as well. But it may have to be significantly altered to be effective, since 
in other research contexts different data and interaction forms will be relevant (e.g. in 
computer science the predominant role of conferences, and secondary role of journal 
publications). Finally, we are capturing here exclusively collaboration forms that manifest 
themselves in co-authorship - other forms of informal collaboration are not captured, although 
informants underline their importance to their work. There are additional traces of interaction 
and influence, such as inter-citation, or workshop participation, to complement the picture, 
but there will remain important forms of informal exchange that are not documented. 

Conclusions 

Through combination of qualitative and quantitative methods we have arrived at fundamental 
insights about collaboration patterns in scientific specialties in chemistry. A mesoscopic 
analysis of linking patterns in co-authorship networks has pointed us to different structural 
types of research performing units as well as different types of collaborative relations. Our 
field study results allow us to match these structural features with real world scenarios that 
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clarify the meaning and validate the relevance of those structural differences. The next step 
will be to refine the analysis of linking patterns by taking node roles and node role specific 
connectivity into account, and to develop an algorithmic method that delivers a quantification 
of the distribution of collaboration types for systematic comparison between specialties.  
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Appendix 

Guided by our informants we developed lexical queries to retrieve from Web of Science the 
literature covering a specific speciality– sometimes a single term, sometimes a 2-3 line long 
query using Boolean operators. Our informants validated the data sets checking whether 
crucial authors whom they expected to see were actually represented, and whether out-of-
scope topics had been accidentally introduced. The data was then further processed to 
eliminate articles with only one author or unknown authors (indicated by 'Anon' in the WoS 
records), or with only a single reference as the latter records typically do not refer to original 
research articles or reviews. 
 
This study is part of a larger dissertation research project. To ensure the anonymity of the 
human participants of the field study part of this research in accordance with the IRBv 
approved protocol for the dissertation research we cannot disclose the lexical queries that 
would provide access to the exact data sets discussed in this report. If access to the networks 
build from the data used in this study is needed for a particular research or validation purpose 
we are happy to work out a solution that retains the anonymity of our study participants. 
 
Data Field A: 
Time span: 1991-2008, number of records: 2,835 (retrieved on 25 Sep 2008) 
 
Data Field B: 
Time span: 1991-2008, number of records: 12,817 (retrieved on 14 Nov 2008) 
  
Data Field C: 
Time span: 1987-2008, number of records: 30,636 (retrieved on 17 Dec 2008). 
                                                 
i We call these ‘seed’ groups as we regard them as entry points into scientific communities, and plan to extend 
our field studies following links (of cooperation or competition) of these seed labs. 
ii When comparing this number to other co-author networks in the literature, remember that this number is 
calculated for a reduced co-author network (after excluding transient authors). Hence this number will 
overestimate the relative size of the giant component for the unreduced network. 
iii Available from Martin Rosvall’s home page at http://www.tp.umu.se/~rosvall/code.html 
iv Our field studies confirm that in areas of synthetic chemistry the task of having to find someone with the 
instrumental equipment to conduct certain measurements on your sample is very common. 
v Institutional Review Board, http://en.wikipedia.org/wiki/Institutional_review_board 




