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Abstract 
This paper introduces a new approach to describe the spread of research topics across disciplines using epidemic 
models. The approach is based on applying individual-based models from mathematical epidemiology to the 
diffusion of a research topic over a contact network that represents the map of science –as obtained from 
citations between ISI Subject Categories. Using research publications on kinesin as a case study, we report a 
better fit between model and empirical data when using the citation-based contact network. Incubation periods 
on the order of 4 to 15.5 years support the view that, whilst research topics may grow very quickly, they face 
difficulties to overcome disciplinary boundaries. 

Introduction 

The diffusion of knowledge in general and the spread of research topics in particular, 
resemble in many ways the spread of infectious diseases where contact between an infectious 
and a susceptible individual can lead to the spread of infection. In a similar way, individuals 
or scientific communities working on a particular research topic or idea can motivate other 
individuals or groups to start work based on the same or similar topics. Using models that are 
well known in the context of mathematical epidemiology, we develop an individual-based 
weighted network model that captures the dynamics of transmission of a research topic across 
scientific disciplines. The novelty of the approach we present here is that, whereas previous 
studies have investigated the growth of a topic in terms of networks of papers (e.g. 
Bettencourt et al., 2006; 2008), we inquire here into how a research topic spreads over 
disciplines. This novel perspective captures the diffusion of topics over the map of science, 
whereas former studies had focused on growth dynamics. 
 
In this exploratory study, we show that the spread of a topic (in this case, research on 
molecular motor kinesin –a “nano-engine”) over a network of disciplines can be well 
approximated by models used in the context of the transmission of infectious diseases 
(Keeling & Rohani, 2008). Our approach builds on previous network models that have been 
successfully used to explain and predict the pattern of infectious disease transmission (Kiss et 
al., 2006; Green et al., 2008).  

Methods and data 

A set of publications (articles, reviews and letters) related to the molecular motor kinesin was 
constructed searching the term “kinesin” in the bibliographic field “Topic” of the ISI Web of 
Science database. This search yielded 5,260 publications starting from 1985 (2 publications) 
to 2007 (557)i. Each publication is assigned to a discipline according to ISI Web of Science’s 
classification in terms of Subject Categories (SCs). The matrix of citations between SCs was 
obtained from Leydesdorff and Rafols’ (2009) (data available at Leydesdorff’s webpage)ii. 
This SC to SC citation matrix had been created for 2006 from the Journal Citation Reports 
(JRC) of the Science Citation Index (SCI). 
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This citations matrix with 171 nodes (N=171) as SCsiii is used to construct the contact 
network over which the transmission dynamics unfolds (in this case, the spread of research 
topics). The baseline citation network (the “backbone” of science) may be understood as 
representing the knowledge flows among SCs. The key assumption in the model is that that 
the weight of a link of this network is a good indicator in determining the likelihood of a SC 
becoming research-active in a certain area given that some other related SCs are already 
research-active in this specific area. However, the links are normalised so that the weight of 
the incoming links for all SCs add up to one. Hence the weight wij of the directed link from 
SCi to SCj is: 
 

wij 
#  of citations from SCj to SCi

#  of total citations made by SCj 
    with    .1for 1 Njw

i
ij    (1) 

The model 

Although the quantitative modelling of the spread of research ideas or topics using 
epidemiological models started almost as early as bibliometrics (see review by Garfield. 
1980), it has been recently re-opened with more sophisticated methods (Bettencourt et al. 
2006; 2008). Here we suggest a perspective that departs from these studies in two respects. 
First, we aim to investigate the spread of a topic over disciplines (SCs) –not publications or 
authors, which describe mainly just growth. Second, the former studies have used only simple 
differential-equation-based compartmental models. While compartmental models are 
transparent and allow the derivation of some analytical results, they are limited in their 
capability to capture heterogeneities at the individual level (i.e. in this case heterogeneity in 
the in and out degree distributions and link weight distribution). 
 
In our model, we look if one SC (a node in the network) has publications in a topic at a given 
time, and explore how this spreads to other nodes (or SCs) in the map of science via links 
weighted according to intensity of citations between SCs. Following Sharkey (2008), we use 
an individual-based model where equations for the probability of being in a particular state at 
a particular time are worked out based on the links between SCs, the status of neighbours, and 
given transmission and incubation rates. 
 
In the models that we consider, any SC is in one of the three possible states: susceptible to 
infection (S), incubating the topic (E), and finally infected or adopter (I). Susceptible SCs are 
either not aware of a particular research topic or if aware, can still choose not to adopt it. 
Incubating SCs are those that are aware of a certain topic and may have started engaging with 
it. This is expected to result in tangible research output in the form of papers. Infected SCs or 
adopters are those that are actively working and publishing in a particular research topic. In 
terms of empirical data, infected SCs in a given year are those that published at least one 
paper on kinesin during that year. Further states such as recovered (i.e. SCs that have stopped 
working on a particular research area, often denoted by R in some models) and sceptics or 
stiflers (i.e., SCs that are aware of the topic but do not engage with it or support another 
competing topic or research area, often denoted by Z) are possible. However, in our current 
model the recovered class is ignored since the empirical data for our case shows continued 
growth (i.e. all SCs continue to publish in the topic once they have become active). The 
models are called SEI when they include all three states or SI, when only S and I states are 
included. The model equations are given by: 
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where 0≤ PI(j)(t) ≤ 1 denotes the probability of node j  being infected at time t (likewise for 
E(j) and S(j)). Throughout the simulation, PS(j)(t)+PE(j)(t)+PI(j)(t)=1, for all t>0. The contact 
network is represented by Tji = Gji with Gji=(wji)j,i=1,…,N denoting the adjacency matrix that 
includes link weights.  is the transmission rate per contact and 1/g is the average incubation 
or latent period. By numerically integrating the ordinary differential equations, the number of 
the infected or adopter SCs at time t according to the model can be estimated 
as .)()( )(

j
jI tPtI   

The simulation is started at time 0t  corresponding to 1985 and the equations are integrated 
forward in time until 2007. The initial infection is seeded in the two SCs corresponding to 
Cell Biology, and Biochemistry and Molecular Biology. The SEI model has two free 
parameters (i.e.  and g) that allow to fit the model output to the empirical data. In this case 
SC count and I(t) are normalised by N and compared on a yearly basis. The estimation of 
parameters is performed according to a modified version of the Kolmogorov-Smirnov 
statistics, i.e. a minimum distance estimation between an empirical distribution function of a 
sample and the cumulative distribution function of the reference distribution 
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The count of the SCs that are active in kinesin-related research provides information at the 
level of all SCs or population level. However, a good model will also be able to provide 
information at the individual, or in this case, SC level. An appropriate model that fits the data 
well, apart from accurate prediction of the growth in the number of SCs, can also predict the 
exact SCs that are active, at a particular time, in the kinesin-related research. To monitor 
model prediction at the SC level the following likelihood function is considered: 
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1
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where }1,0{)( tYi , with a value of one denoting a SC that is active in kinesin-related research 

at time t and zero if otherwise (Green et al., 2008). M denotes the number of time points 
where comparisons at the individual level are made. In this case M=23, and this corresponds 
to yearly comparisons from 1985 until 2007. 

Results 

To explore the significance of the weighted contact network (the “backbone” of science) and 
the incubation time in explaining the spread of research topics, we investigate different 
models, as shown in Table 1. We consider three different versions of the SI model without the 
incubation time g. First, the case where all links are equal to the average link weight. Second, 
the case where the weights of all incoming links of any node or SC are equal and sum to one. 
Third, the case in which the network is empirically weighted. Finally, we consider the full SEI 
model, as shown in Equation 2.  
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Table 1 shows that the SEI model with the empirically weighted network (i.e. using the 
backbone of science to model “flow of knowledge”) provides a better fit (lower AdaptedKS 
and L) compared to the case when all weights are assumed to be equal. Figure 1 illustrates the 
best fit prevalence curves based on AdaptedKS (population level) and L (individual SC level). 

Table 1: Parameter estimates for different network and disease transmission models.  

Model 
type 

Network Type 
Model parameters Descriptors of model fit 

 1/g 
AdaptedKS 

(Populat. level) 
L  

(Individual level) 

SI All weights equal 
0.229 --- Min=0.1146 1700.530081 

0.238 --- 0.1533 Min=1694.533715 

SI 
Weights of all incoming 

links sum to one 
0.230 --- Min=0.1153 1811.015665 

0.238 --- 0.1484 Min=1806.257798 

SI Empirically weighted 0.174 --- Min=0.0518 Min=1395.716852 

SEI Empirically weighted 
0.37 4.0 0.0872 Min=1358.911193 

1.90 15.5 Min=0.0261 1460.664702 

Note: The best fit model and optimal parameters are indicated in bold type. 
 

 
Figure 1: Best fit curves to the growth of the number of SCs that are active in kinesin-related 

research (top), AdaptedSK (bottom left) and L (bottom right), as a function of the latent period 
(1/g) and transmission rate (. Model based on the weighted network with SEI transmission.  

 
To interpret the results shown in Figure 1, it is useful to consider first a fixed latent period 1/g 
and second the value of  that minimises the difference between data and model output. Long 
latency periods require high values of the transmission rate  since individuals remain 
exposed without becoming infectious. This tendency is reflected by a set of optimal parameter 
pairs (1/g,  with both latent period and transmission rate increasing simultaneously (Figure 
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1, bottom left and right). However, the goodness of fit along the set of optimal pairs changes 
with the best agreement based on AdaptedKS occurring for (1/g,  = (15.5, 1.90). For longer 
latent periods, this measure indicates that the discrepancy between model output and data 
increases (Figure 1, bottom left). A similar tendency is observed when the parameter 
estimation happens based on L with the best agreement between data and model output for 
(1/g,  =(4.0, 0.37). Table 1 shows that while the agreement at the population level 
(AdaptedKS) is much better for the SEI model, for the same pair of parameters the agreement 
at the individual level (L) is not as good as for the simple SI model. Hence, agreement at both 
individual and population level is difficult to obtain.  

Discussion 

This paper has demonstrated the feasibility of applying individual-based epidemiological 
models to the spread of a research topic over disciplines. Using research on kinesin as a case 
study, we have confirmed that agreement between model output and empirical data 
significantly increases when the normalised weighted contact network between SCs is used 
(the backbone of science). We have found incubation periods on the order of 4 to 15.5 years, 
which support the view that, whilst research topics may grow very quickly, they face 
difficulties to overcome disciplinary boundaries. This type of information regarding the 
diffusion rate of research topics over disciplines may be of particular interest for emergent 
fields, such as nanotechnologies or biotechnologies, that are viewed as not conforming to 
traditional bodies of knowledge. However, the model agreement at individual level can be 
further improved by considering internal SC dynamics (since most topic growth happens 
within some SCs, this strongly dampens diffusion), and by taking into account not only 
whether a SC is infected or not, but also how active it is (as shown by number of publications 
in the topic). 
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i Due to improved indexing since 1991, this search underestimates the number of publications until 1990 –an 
effect we will overlook here. 
ii Data available at http://www.leydesdorff.net/map06/data.xls. 
iii The SCI had 172 SCs in 2006. We removed the SC “Multidisciplinary Sciences” because we understood that it 
might lead to misleading linkages, given that the publication patterns of journals such as Nature or Science 
publish for diverse audiences but do not necessarily connect them. 




