Book Reviews in Humanities Research Evaluations

Alesia Zuccala and Thed van Leeuwen

Leiden University, Centre for Science and Technology Studies (CWTS), Wassenaarseweg 62A, 2333AL Leiden (the Netherlands)

Abstract

Bibliometric research evaluations in the Humanities are rarely carried out due to drawbacks associated with collecting and using Web of Science data. In this paper we note some of the progress that scholars are making in this area of study, and focus on the growth of book reviews and their citedness in the Humanities journal literature. Book reviews are often used by Humanities scholars for teaching and research, thus for subjects (i.e., History or Literature) where reviewing is a prominent activity we suggest the development of a measure that recognizes their influence on scholarly communication.

Introduction

The purpose of the study is to give more attention to the scholarly role of book reviews and to determine effective methods of including them in research evaluations for the Humanities. First we present a general statistical overview of Humanities subjects, which produce a significant number of book reviews per year (1981-2009; Web of Science). We will then focus on citations to book reviews and suggest possibilities for measuring their contribution to the scholarly communication process.

Figure 1, below, illustrates two types of book reviews. Note that Review Type I differs from Review Type II. The first includes only a reference to the book that has been reviewed, while the second includes both the book and references to other scholarly sources.

If a book review is cited by a journal article, the article may cite the book review alone, or it may cite both the review and the book that the reviewer has reviewed. A journal article might also cite additional scholarly references acknowledged in a book review. Our work involves collecting and analysing data attributed to both book review Types.
Research background

Bibliometric evaluations of research outputs in the Social Sciences and Humanities are riddled with drawbacks; yet many scholars are interested in stimulating improvements (e.g., Archambault & Gagné, 2004; Hicks & Wang, 2009; Moed et al., 2009; Nederhof, 2006). Archambault and Gagné (2004) remind us that bibliometric analyses require large quantities of data and that the pace of theoretical development in the Social Sciences and Humanities can be slower than in the Natural Sciences: “time required to accumulate citations makes analyses more difficult, particularly when the goal is to assist in decision making and policy setting” (p. 24). Hicks and Wang (2009) as well as Moed et al. (2009) focus on the requirements for creating appropriate data infrastructures for the Social Sciences and Humanities. Hicks and Wang (2009) suggest that it is perhaps best to rely on national research documentation systems, where universities submit and care for the quality of their own bibliographic records of publications. Moed et al. (2009) lean towards the Web (e.g., Google Scholar) as a source of data for metrics, emphasizing the role of open access and the development of institutional repositories.

At present, collecting Web of Science (WoS) data for Humanities-based evaluations is a challenge. Monographs and edited books are a predominant aspect of this literature and can only be identified with special filtering procedures applied to reference lists (see Lewison 2001; 2004). Book reviews, on the other hand, are currently more accessible from WoS, and as formal pieces of published information, “considerable space is devoted to book reviews in scholarly journals” (Spink et al., p. 364, 1998).

Research pertaining to book reviews has focused less on their use in academic evaluations and more on their content and applicability for library selection processes (e.g., Furnham, 1986; Natowitz & Wheeler, 1997). Early work by Diodato (1984) found that book reviews are rarely cited; hence bibliometric studies have not been prioritized in past years. Nevertheless, we know that book reviews are useful: humanities and social science scholars read book reviews (i.e., between 1 and 10 per month) and value them more for teaching and research, than scholars in science and technology (see Spink et al., 1998).

Nicolaisen (2002a) has found that books receiving positive or favourable reviews tend to be cited more often than those receiving neutral or negative comments from a reviewer. He has also examined the share of book reviews containing additional references to works other than the book under review in the international journal literature (i.e., Social Sciences, 1997-2001) and found that reviews of this type have been growing rapidly (Nicolaisen, 2002b). Those with more than one reference are seen as trustworthy or, more ‘scholarly’ because the book had been related to previous works in the field. Amongst the scholars that Hartley (2006) has surveyed a high percentage from the arts, social sciences and the sciences seemed to agree that the academic standing of book reviews would be enhanced “if the view points expressed were supported by academic references” and “if institutions gave academic credit for writing book reviews” (p. 1201).

In this study we are interested in the following question: should book reviews be included in academic research evaluations for the Humanities and if so, how would it be best to measure their scholarly influence? Here we have collected data from two predominant reviewing fields, History and Literature. We will present current work pertaining to their citedness and co-citedness with the reviewed book in journal articles, and suggest ways of using this data within the context of a more comprehensive study including other qualitative measures.

Book reviews in the humanities: General statistics

Figure 2 shows that book reviews constitute a large portion of the documents housed in the Thomson Reuter’s Arts & Humanities Citation index (Web of Science). Figure 3 indicates that between the years of 1981 to 2009 the top humanities disciplines with the most book
reviews include History, Literature, Humanities-Multidisciplinary, Philosophy, and Religion (see Figure 3). Note also that growth trends in each field vary during this time period.

![Figure 2. Percentage of document outputs: Arts & Humanities Citation Index (1981-2009).](image)

![Figure 3. Trend analysis of top ranking Humanities disciplines with the most reviews (1981-2009).](image)

Data collection

Our data collection method focuses on the fields of History and Literature (1981-2009). The boundary for History is delineated by the Web of Science (WoS) journal subject categories, and includes History, History of Social Sciences, and the History & Philosophy of Science. Likewise we use the journal subject categories for the field of Literature (i.e., Literary Theory & Criticism; Literary Reviews; Literature- African, Australian, Canadian, American, British Isles, German, Dutch, and Scandinavian; Literature-Romance, Slavic). Statistics pertaining to the two research fields appear in Table 1.
Table 1. Total number of Type I & Type II reviews and citations in *History* and *Literature*.\(^{40}\)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Book Reviews</td>
<td>465,769</td>
<td>370,458</td>
</tr>
<tr>
<td>Total Count</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Cited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type I Reviews</td>
<td>443,422</td>
<td>341,845</td>
</tr>
<tr>
<td>% Cited</td>
<td>10,446</td>
<td>6,282</td>
</tr>
<tr>
<td>Type II Reviews</td>
<td>22,259</td>
<td>28,482</td>
</tr>
<tr>
<td>% Cited</td>
<td>1,711</td>
<td>1,129</td>
</tr>
</tbody>
</table>

Below we outline the steps taken to retrieve data from the WoS databases.

1) Collect book reviews written in *History* and *Literature* (1981-2009) and remove duplicates a review is in a journal assigned to more than one subject category.

2) Determine which reviews have received citations by pairing the WoS Citation Index document code of the book review with the code of the citing document.

3) For each review (Type I and Type II) obtain a list of cited references.

4) Identify the reviewed book as it appears in the book review’s reference list. With a Type I review the isolation procedure is straightforward: if there is only one reference, it is usually to the book under review. Type II reviews require the use of a complex selection algorithm in order to isolate the book from additional references.

5) Amongst the reviews that received citations, determine which ones were co-cited with the reviewed book. Our method requires matching the book *title, author, and publication date* appearing in the reference list of the citing article, with the same iteration of *title, author, and date* appearing in the reference list of the review article. Table 2 highlights the match results at different levels for both *History* and *Literature*.

Table 2. Matching books in citing document and review.

<table>
<thead>
<tr>
<th></th>
<th>History</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>5,092</td>
<td>2,472</td>
</tr>
<tr>
<td>Type II</td>
<td>1,901</td>
<td>704</td>
</tr>
</tbody>
</table>

- book *title* matched in citing document and review
- book *title* and publication date matched in citing document and review
- book *title* and book *author* matched in citing document and review
- all three variables – *title, author, date* – matched in the citing document and review

In History 88 book reviews and in Literature 131 book reviews could not be assigned a type due to a lack of references.
Matching errors associated with the citing document and review document reference lists occurred most at the level of the author and then with the year; specifically, a misspelling of the author’s surname, or omission of one initial, or a missing/incorrect publication date. Additional errors occurred if one document referenced the book editor’s surname and the other referenced the author who wrote a chapter in the same edited book. Yet another problem occurred when the book title was part of a series and appeared more than once in a reference list with a different author per volume.

Measuring the scholarly influence of reviews

If we look at the statistics shown in Figure 2, above, the most visible document processed for the Web of Science is the book review (i.e., over 45%). However, as expected, the total number of citations to book reviews in journal articles processed by the Web of Science is relatively low. From the period of 1981 to 2009, 2% of Type I book reviews published in both *History* and *Literature* were cited. Type II reviews received slightly more citations: in *History* 8% and in *Literature* 4%.

A ‘healthy’ metric is not likely to be useful at the individual author level, since there are simply not enough counts of citations to be significant. However, we suggest evaluating or ranking the journals that publish book reviews, with an indicator termed the Book Review Influence Factor (BRIF). With the BRIF, we apply weights to a book review, based on received citations and co-citations. For instance, if the book review has not been cited, it receives a weight of “0”, if it has been cited, a weight of “1”, and if co-cited with the book, a weight of “1.5”. Granting a higher weight to a review co-cited with a book is based on the idea that it has had some influence, either negative or positive, on how the content of the book was received (note: a content analysis would be a useful verification process here).

Below, we present an early version of the BRIF. It is associated with the top ranking WoS *History* journals that have published book reviews from 1981 to 2009. We calculate a *BRIF* for the *American Historical Review*, which published 33 Type I book reviews in 1987\(^1\). Sixteen reviews were cited alone (weight=1; 16 with a total citation count=30) and seventeen reviews were co-cited with the book (weight=1.5; 17 with a total citation count=18).

\[
BRIF(1987) = \left(\frac{W_i \times 30}{33} \right) + \left(\frac{W_{i.5} \times 18}{33} \right) = 0.879 + 0.818 = 1.70
\]

Table 3. Top History journals publishing reviews and Type I BRIF calculated for 1987.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>American Historical Review</td>
<td>29,006</td>
<td>33</td>
<td>1.70</td>
</tr>
<tr>
<td>Journal of American History</td>
<td>17,221</td>
<td>27</td>
<td>1.54</td>
</tr>
<tr>
<td>Hist. Z.</td>
<td>15,928</td>
<td>12</td>
<td>1.58</td>
</tr>
<tr>
<td>Engl. Hist Rev.</td>
<td>12,265</td>
<td>14</td>
<td>1.29</td>
</tr>
<tr>
<td>History</td>
<td>12,005</td>
<td>4</td>
<td>1.13</td>
</tr>
</tbody>
</table>

An additional analysis shows the degree to which Type I versus Type II *History* book reviews are cited. Figure 4 shows that Type II are more highly cited; thus seem to hold greater scholarly value (i.e., as suggested by Nicolaisen, 2002b).

\(^1\) Due to the complexity of isolating books for Type II data, we focus on Type I in this calculation.
Further research

Here we only introduce the BRIF, thus more work needs to be done to refine this measure to include in an effective evaluation procedure. The goal is to carry out complete and equal analyses for *History* and *Literature*, in order to understand more fully the underlying processes associated with the production and use of book reviews in both fields.

References

