Abstract
Even within a narrowly defined research speciality, the citations among its papers may form a dense and complex network. In this paper a new mapping approach is suggested and tested on a network of papers on co-citation analysis. One way of mapping the dynamics of the field is to reduce the number of direct citation links by successively minimizing the citation year lag. Another approach is to remove the weakest links from the network. When the two approaches are combined, keeping only short and strong citation links, interesting decompositions of the original citation network was found.

Introduction
Over the years quite a number of methods to map research specialities have been suggested, and reviewed by Morris & Martens (2008) and Bar Ilan (2008). There is now a set of different similarity measures and mapping techniques in use (Schneider & Borlund 2007a, 2007b), and some of them heavily debated (Ahlgren et al 2003, White 2003a, Bensman 2004). White (2003b) used a pathfinder algorithm to layout the structure of the information science domain. To study development over time Garfield (2004) has integrated a main-path analysis, inspired by Hummon & Doreian (1989), in his HistCite software, which has been used by Lucio-Arias & Leydesdorff (2008) and others. New advanced algorithms for clustering complex networks have been applied to citation data (Rosvall & Bergstrom 2008).
More attention should be given to mapping of direct citation relationships since they form the basis for the other, more fashionable, indirect relationships based on them, such as co-citation and shared references. Building on the tradition set out by Price (1965) this paper will focus on the mapping of research fronts using quite simple and straightforward ways of reducing a citation network.
One way of mapping the dynamics of a field is to reduce the number of direct citation links by the citation time lag. This was what Price (1965) suggested to identify the research front of a speciality. If we successively shorten the citation time lag we could hope to find one or several components linked by papers published in the same year range. As suggested by Persson (2010), direct citations could also be weighted by the number of indirect citations coupled to it. The idea is that if paper A cites paper B, that citation would be stronger if both papers are co-cited by other papers or share citations to other papers. This measure is called Weighted Direct Citations (WDC).

Data
This study is based on a download from Web of Science (updated 2011-03-04) of 569 articles & proceedings papers from SCI, SSCI, A&HCI, and searched by “co-citation* OR cocitation**” in topic. The Bibexcel software (Persson 2011) was used to indentify 2895 direct citation links among the papers, as well as for calculating the citation year lag and WDC for each citation link. To identify papers on author co-citation (ACA), all papers were classified as either ACA or not if the string “author co-citation” or “author cocitation” was found somewhere in the downloaded full record. The Pajek software was used to draw maps.

Results
Figure 1A shows the distribution of citation links by citation year lag and WDC. About 40 percent of all links are within five years, and 21 percent have a WDC of five or more. When
the whole network is ordered in year layers (Figure 1B), a quite clear picture emerges with major papers appearing in big red and blue circles. On the top we find the paper by Small (1973) that stated the whole field of co-citation studies, and below it the ACA papers by White & Griffith (1982) and further down White & McCain (1998). Two other significant papers are indicated by their first author, Braam et al (1991) and Ahlgren et al (2003).

In Figure 1C, the citation year lag is set to max one year and shows one of several components. The right part is centred on the Ahlgren (2003) and White (2003) dispute regarding the use of Pearson’s correlation, and the left part contains other mapping studies from the same period. Figure 1D has one of the components that emerge when WDC is set to >=3. It has 23 fairly recent papers on mapping, covering parts of the area at the bottom of Figure 1B.

Figure 1. Maps of papers on co-citation studies.
Blue circles= ACA studies, and red circles=other studies.
Conclusions

It appears that a combined approach, reducing the citation network to short and strong citations, gives an adequate view of research fronts and subfield dynamics. When the two methods are used separately, they also produce relevant mappings. Above all, this approach shows that it is possible to decompose a complex citation network using quite straightforward elimination of citation links.

References

Price, D. J. D. (1965). Networks of scientific papers. Science, 149(3683), 510-.

