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Abstract 
We introduce a new visual analytic approach to the study of scientific discoveries and knowledge diffusion. Our 
approach enhances contemporary co-citation network analysis by enabling analysts to identify co-citation 
clusters of cited references intuitively, synthesize thematic contexts in which these clusters are cited, and trace 
how research focus evolves over time. The new approach integrates and streamlines a few previously isolated 
techniques such as spectral clustering and feature selection algorithms. The integrative procedure is expected to 
empower and strengthen analytical and sense making capabilities of scientists, learners, and researchers to 
understand the dynamics of the evolution of scientific domains in a wide range of scientific fields, science 
studies, and science policy evaluation and planning. We demonstrate the potential of our approach through a 
visual analysis of the evolution of astronomical research associated with the Sloan Digital Sky Survey (SDSS) 
using bibliographic data between 1994 and 2008. Implications on methodological issues are also addressed. 

Introduction 

Analyzing the evolution of a scientific field is a challenging task. Analysts often need to deal 
with the overwhelming complexity of a field of study and work back and forth between 
various levels of granularity. Although more and more tools become available, sense making 
remains to be one of the major bottleneck analytical tasks. In this article, we introduce a new 
visual analytic approach in order to strengthen and enhance the capabilities of analysts to 
achieve their analytical tasks. In particular, we will focus on the analysis of co-citation 
networks of a scientific field, although the procedure can be applied to a wider range of 
networks. 

Analyzing Dynamic Networks 

Many phenomena can be represented in the form of networks, for example, friendship on 
FaceBook, trading between countries, and collaboration in scientific publications (Barabási, et 
al., 2002; Snijders, 2001; Wasserman & Faust, 1994). A typical path of analyzing a dynamic 
network may involve the following steps: formulate, visualize, clustering, interpret, and 
synthesize (See Figure 1). Many tools are available to support these individual steps. On the 
other hand, analysts often have to improvise different tools to accomplish their tasks. For 
example, analysts may divide the nodes of a network into clusters by applying a clustering 
algorithm to various node attributes. Clusters obtained in such ways may not match the 
topological structure of the original network, although one may turn such discrepancies into 
some good use. We are interested in processes that would produce an intuitive and cohesive 
clustering given the topology of the original network. 
The new procedure we are proposing is depicted in Figure 1b. It streamlines the key steps 
found in a typical path. The significance of the streamlined process is that it determines 
clusters based on the strengths of the links in the network. In Figure 1c, we show that the new 
procedure leads to several advantages such as increased clarity of network visualization, 
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intuitive aggregation of cocited references, and automatically labeling clusters to characterize 
the nature of their impacts. 

 
Figure 1. A common path of network analysis (a) and a new procedure (b) and its effects (c). 

According to Gestalt principles, perceived proximity plays a fundamental role in how we 
aggregate objects into groups (Koffka, 1955). If some objects appear to be closer to each other 
than the rest of objects, we tend to be convinced that they belong together. Seeing objects in 
groups instead of individual objects is important in many cognitive and analytical activities. 
As a generic chunking method, we often use it to simplify a complex phenomenon so that we 
can begin to address generic properties. 
Figure 2 shows three illustrative examples of how clarity of displayed proximity can make the 
chunking task easy (Figure 2a) or hard (Figure 2c). Co-citation networks represent how often 
two bibliographic items are cited together, for example, authors in author co-citation networks 
(White & Griffith, 1981) and papers in document co-citation networks (Small, 1973). When 
analyzing co-citation networks, or more generic networks, we often find ourselves in the 
situation depicted in Figure 2c. Our goal is to find mechanisms that can improve the 
representation and approach the ideal case of Figure 2a. A hot topic in the graph drawing 
community, called constraint graph drawing, addresses this problem (Dwyer, et al., 2008). In 
this article, however, we propose an alternative solution that is in harmony with our overall 
goal for strengthening visual analytical capabilities of analysts. 

 
Figure 2. Clarity of displayed proximity plays an important role in chunking tasks. 

Methods 

The proposed procedure consists of the following key steps: constructing an integrated 
network of multiple networks, finding clusters of nodes in the network based on connectivity, 
selecting candidate labeling terms for each cluster, and visual exploration and analysis. In this 
article, we will focus on the new steps, namely clustering, labeling, and visual analysis. 
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Networks 

It is possible to construct a wide range of networks from bibliographic data. For example, 
CiteSpace supports collaboration networks of coauthors, collaboration networks of 
institutions and countries, author co-citation networks, document co-citation networks, 
concept networks of noun phrases and keywords, and hybrid networks that consist of multiple 
types of nodes and links (Chen, 2006). For simplicity, we will primarily focus on document 
co-citation networks and relevant analysis. 
The study of an evolving scientific field often needs to focus on how the field evolves over 
several years. The notion of progressive knowledge domain visualization was introduced in 
order to accommodate such needs (Chen, 2004). Suppose we are interested in the evolution of 
a field in a time interval T, for example, between 1990 and 2008, time slicing is an operation 
that divides the interval T into multiple equal length sub-intervals Ti. While CiteSpace 
implements non-overlapping sub-intervals, overlapping sub-intervals may be also considered. 
For each sub-interval, or time slice, a network can be constructed purely based on data falling 
into the time slice. For example, a co-citation network of 1990 can be constructed based on 
instances of co-citation found in scientific papers published in 1990. Similarly, a collaboration 
network of authors of 1990 would consist of researchers who have published together in 
1990. 
In this article, the goal of our visual analysis is to assess the impact of the Sloan Digital Sky 
Survey (SDSS) (Chen, Zhang, Zhu, & Vogeley, 2007). The input data was retrieved from the 
Web of Science with a topic search of articles on SDSS between 1994 and 2008. We used one 
year as the length of our time slice. In each time slice, a co-citation network was constructed 
based on the co-citation instances made by the top 30 most cited records published in the 
corresponding time interval. The top 30 most cited records were determined by their original 
times cited in the Web of Science. These individual networks led to an integrated network of 
259 nodes and 2,130 co-citation links. Our subsequent study will focus on this network. 

Clustering 

We utilize the spectral clustering technique to identify clusters in networks. Spectral 
clustering has many fundamental advantages over the traditional clustering algorithms such as 
k-means or single linkage. For example, results obtained by spectral clustering very often 
outperform the traditional approaches (Luxburg, 2006; Ng, Jordan, & Weiss, 2002; Shi & 
Malik, 2000). 
There are many reasons one might need to identify clusters in data given in the form of 
associative networks, for example, to find communities in a social network (Girvan & 
Newman, 2002). In such situations, the problem of clustering can be stated as the need to find 
a partition of the network such that nodes within a cluster would be tightly connected, 
whereas nodes between different clusters would be loosely connected or not connected at all. 
Consider our document co-citation network, this is equivalent to find a partition such that 
references within a cluster would be significantly more cocited than references from different 
clusters. Spectral clustering offers a solution to such graph partitioning problems. This view 
of clustering fits our needs perfectly and intuitively. In addition, since spectral clustering 
comes naturally for a network, it has the distinct advantage over alternative clustering 
algorithms that rely on node attributes rather than linkage. Compared to traditional linkage-
based algorithms such as single linkage, spectral clustering has the advantage due to its linear 
algebra basis. Spectral clustering is implemented as an approximation to the graph 
partitioning problem with constraints stated above, i.e. members within clusters are tightly 
coupled, whereas members between clusters are loosely connected or disconnected. 
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Enhancing the Clarify of Layout 

As a welcome by-product of spectral clustering, we enhance the clarity of network 
visualization by taking into account the graph partitioning information. Constrained graph 
drawing is currently a hot topic. The goal is to layout a graph with given constraints (Dwyer, 
et al., 2008). Given a graph partition, drawing the graph with minimal overlapping partition 
regions is one of the common special cases. 
One of the common analytical tasks in network analysis is to study the largest connected 
component of a network. The ability to find finer-grained clusters has significant theoretical 
and practical implications. Our previous studies show that co-citation networks may contain 
tightly knitted components. In other words, if the largest connected component is densely 
connected, it would be hard to identify meaningful sub-structures. Since spectral clustering 
works at the strength of links rather than the simple presence or absence of links, we expect 
that spectral clustering will find finer-grained clusters even within large connected 
components. 
We make simple modifications of force-directed graph layout algorithms to improve the 
clarity of such processes. As mentioned earlier, spectral clustering comes natural to any 
networks, such enhancements rely on information that is already available with given 
networks. Briefly speaking, once the clustering information is available, the layout algorithm 
would maintain the strength of a within-cluster link but downplay or simply ignore a between-
cluster link during the layout process. 

Cluster Labeling 

Once clusters are identified in a network, the next step is to help analysts make sense of the 
nature of these clusters, how they connect to one another, and how their relationships evolve 
over time. We introduce algorithmic cluster labeling to assist this step.  

Methodological Issues 

Traditionally, clusters would be identified using an independent clustering process in contrast 
to the integrative and cohesive approach we described above. Traditionally, sense making 
identified clusters is essentially a manual process. Researchers often examine members of 
each cluster and sum up what they believe to be the most common characteristics of the 
cluster. There are two potential drawbacks with the traditional approach, especially in the 
study of co-citation networks. First, co-citation clusters could be too complex to lend 
themselves to simple eyeball examinations. The cognitive load required for aggregating and 
synthesizing the details is likely to be high. A computer-generated baseline list of candidate 
labeling terms would reduce the burden significantly. Second, and more importantly, studying 
co-citation clusters themselves does not necessarily reveal the actual impacts of these clusters. 
In fact, it is quite possible that co-citation clusters are referenced by subsequent publications 
not only in the same topical area, but also in topical areas that may be not obvious from the 
cited references alone. In other words, traditional studies often infer the nature of co-citation 
grouping, but they do not directly address the question of why a co-citation cluster is formed 
in the first place. 
Unlike traditional studies of co-citation networks, we focus on the citers to a co-citation 
cluster instead of the citees and label the cluster according to salient features selected from the 
titles and index terms of the citers. Our prototype implements a number of classic feature 
selection algorithms, namely term frequency by inverse document frequency (tf*idf) (Salton, 
Allan, & Buckley, 1994), log-likelihood ratio test (Dunning, 1993), mutual information (not 
discussed in this article), and latent semantic indexing (Deerwester, Dumais, Landauer, 
Furnas, & Harshman, 1990). Formal evaluations are beyond the scope of this article. As part 
of future work, we are planning cross-validations with labels generated by other means and a 
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study of topological distributions of labels selected by different algorithms in networks of 
terms. 

Selection by tf*idf 

Given a cluster C, the citing set consists of articles that cite one or more members of the 
cluster. Candidate labeling terms for the clusters are selected from the titles, abstracts, or 
index terms of articles in the citing set. In this article, we focus on selecting labels from titles 
and index terms. First, we extract noun phrases from titles and compute weights of these 
phrases using tf*idf. A noun phrase may consist of a noun and possibly modified by one or 
more adjectives, for example, supermassive black hole. Plurals are stemmed using a few 
simple stemming rules. Using tf*idf has known drawbacks due to the term independency 
assumption. Nevertheless, its properties are widely known; this, it serves as a good reference 
point. 

Selection by log-likelihood ratio test 

The log-likelihood ratio test we adapted in our approach measures how often a term is 
expected to be found within a cluster’s citer set to how often it is found within other clusters’ 
citer sets. It tends to identify the uniqueness of a term to a cluster. 

Selection by latent semantic indexing 

Latent semantic indexing, or latent semantic analysis (LSA), is another classic method for 
dimension reduction in text analysis. LSA utilizes the singular value decomposition (SVD) 
technique on a term by document matrix. In order to select candidate labeling terms of a 
cluster, we select the top 5 terms with the strongest coefficients on each of the first and 
second dimensions of the latent semantic space derived from the citer set of the cluster. 

Results 

First, we show how spectral clustering can enhance the clarity of network visualization. In 
Figure 3, the left image shows a visualization of the core of our SDSS co-citation network, the 
right image shows a cluster-enhanced visualization of the same network. Before the 
enhancement, York-2000 and Fukugita-1996 appear to be very close to each other. After the 
enhancement, it becomes clear that they belong to two distinct co-citation clusters. The 
improved clarity will be useful in the subsequent analysis of the domain. 

 
Figure 3. The effect of enhanced clarity (left: before; right: after).  

The four images in Figure 4 show various options of visual exploration. The two clusters in 
the middle now become separated from each other. Despite the numerous links between the 
two clusters, spectral clustering detected that they are two distinct clusters in terms of how 
they are cocited. The two images on the second row depict pivotal nodes (with purple rings) 
and nodes with citation burst (with red tree rings). The pivotal nodes play a brokerage role 
between different clusters. They are particularly useful in interpreting the macroscopic 
structure of a knowledge domain (Chen, 2006). The red lines in the lower right image depict 
co-citation instances made in a particular time slice, in this case, year 2001. These red lines 
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show that the middle cluster is essentially formed in 2001 with between-cluster co-citation 
links to two neighboring clusters. These features would allow analysts to pin point the 
specific time when attention is paid to a cluster and how multiple clusters are connected. 

 
Figure 4. Various node and link attributes depicted for visual exploration. 

Figures 5 and 6 are screenshots of the region of some of the core clusters of the SDSS co-
citation network. In Figure 5, clusters are labeled by title phrases selected by tf*idf. Four 
clusters (#9, #10, #11, and #12) have the identical label of “sloan digital sky survey.” The 
numbers in front of the labels are weights of the corresponding labels by tf*idf. The clarity of 
the layout is enhanced by spectral clustering. On the one hand, it appears that the four clusters 
are common enough to get the same label. On the other hand, we also know that each of them 
must play a unique role in the subsequent course of the field because they are separated by 
how they are cocited by researchers of the SDSS field. 
Figure 6 shows the same clusters but with labels selected by a different algorithm, i.e. the log-
likelihood ratio test. The four clusters now have different labels. Note other clusters’ labels 
are changed too. Cluster 9 is labeled as field methane dwarf. Methane dwarfs are very cool 
brown dwarfs. They are smaller than a star, but larger than a planet, and they are very hard to 
detect because they are very faint in the sky1. Finding rare objects such as methane dwarfs is 
one of the first discoveries made possible by the SDSS survey. Cluster 10 is labeled as high-
redshift quasar. The redshift measures how far the light of an astronomical object has been 
shifted to longer wavelengths due to the expansion of the Universe. The higher the redshift, 
the more distant the astronomical object. Finding high-redshift quasars is important for the 
study of the early evolution of the Universe. Cluster 11 is labeled as dust emission. Our 
subsequent analysis shows that the broader context of this cluster is dust emission from 
quasars. Cluster 12 is labeled as luminous red galaxy. This cluster is in fact the largest cluster 
in the SDSS co-citation network, concerning various properties of galaxies.  
In summary, labels selected log-likelihood ratio test appear to characterize the nature of 
clusters with finer-grained concepts than labels selected by tf*idf. Specific labels are useful 
for differentiating different clusters, whereas more generic labels tend to be easy to 
understand, especially for domain novices. The largest 11 clusters are summarized in Table 2. 
The third labeling algorithm is based on latent semantic analysis (LSA). Unlike the first two 
labeling algorithms, the LSA-based labeling algorithm uses single words instead of multi-
word noun phrases. The LSA-based labeling algorithm first identifies the primary and 
secondary dimensions of the latent semantic space derived from the citer set of each cluster. 
Next, it selects the top 5 terms with the strongest weights along each dimension. Table 1 lists 
the selected terms for the four clusters discussed above. The primary concept terms appear to 
correspond to the noun phrase labels identified by tf*idf. The secondary concept terms appear 
to be more specific. Taken these terms together for each cluster, we can tell that Cluster 9 is 

                                                 
1 http://www.sdss.org/news/releases/19990531.dwarf.html  
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about methane dwarfs, Cluster 10 about quasars, Cluster 11 also about quasars, and Cluster 12 
about galaxies. 

 
Figure 5. SDSS-core clusters (#9, #10, #11, #12) are separated but still labeled by tf*idf with the 

same label sloan digital sky survey. 

 
Figure 6. The four SDSS-core clusters (#9, #10, #11, #12) now have finer-grained labels by log-

likelihood ratio tests. 

In the rest of the article, we will triangulate labels selected by the three algorithms and 
examine the full titles of the most representative citing papers to determine the most 
appropriate labels of clusters. 

Table 1. Labels by LSA-based selection. 

Clusters #9 #10 #11 #12 
Primary 
concept 

4.58  survey 7.25  survey 3.60  quasars 12.52  survey 
4.40  sky 7.08  sky 3.43  survey 12.46  sky 
3.81  sloan 6.59  sloan 3.31  sloan 12.15  sloan 
3.81  digital 6.59  digital 3.31  digital 12.06  digital 
1.87  commissioning 3.24  quasars 3.31  sky 4.44  galaxies 

Secondary 
concept 

1.98  methane 0.72  data 1.25  quasar 1.99  sky 
1.40  dwarfs 0.70  sloan 1.09  data 1.78  digital 
1.29  field 0.70  digital 0.84  sloan 1.75  sloan 
1.19  discovery 0.55  sky 0.84  digital 0.80  survey 
1.11  dwarf 0.47  stars 0.84  sky 0.33  quasars 
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A total of 22 co-citation clusters were found by spectral clustering. Table 2 shows the 11 
largest clusters in terms of the number of references N. The first column (#) shows the cluster 
IDs. We applied the three labeling methods to the titles and index terms of citing papers of 
each cluster. The last column shows labels we chose subjectively based on the information 
shown in all other columns. The numbers in tf*idf columns are the term weights, e.g. (60.78) 
brown dwarf. The numbers in log-likelihood columns are the frequency of the corresponding 
terms. For example, (18) luminous red galaxy means that the term appears 18 times in the 
citer set. The numbers in the Most representative citers column are the number of cluster 
members the paper cites. For example, the (13) in front of the first title in Cluster 12 means 
that the paper cites 13 of the 45 members of the cluster. The table is sorted by cluster size. 

Table 2. The largest 11 clusters in the SDSS co-citation network. 

# N Title Terms Index Terms Titles Title Terms Overall 

  tf*idf log-
likelihood 

tf*idf log-
likelihood 

Most representative citers LSA subjective 

12 45 (244.27)  
sloan digital sky 
survey  
(155.49)  
sky survey  
(117.05)  
data release  
(103.61) active 
galactic nuclei  

(18) 
luminous 
red galaxy 

(60.78)  
brown dwarf 
(48.56)  
gliese 229b 

(38)  
gliese 229b

(13) the broadband optical 
properties of galaxies with redshifts 
0.02 z 0.22 
(11) h delta-strong galaxies in the 
sloan digital sky survey: i. the 
catalog 
(11) the environment of passive 
spiral galaxies in the sdss 
(11) the morphology-density 
relation in the sloan digital sky 
survey 
(11) the size distribution of galaxies 
in the sloan digital sky survey 

12.52  survey 
12.46  sky 
12.15  sloan 
12.06  digital 

4.44  galaxies 

Properties 
of galaxies 
in SDSS 

10 33 (104.86)  
sloan digital sky 
survey 
(77.04) 
commissioning data 
 (71.24)  
sky survey 
(56.26)  
high-redshift quasar  

(33) 
high-
redshift 
quasar 

(819.91)  
release 
(809.61)  
data release 

(232)  
survey 
photometric 
system 

(15) discovery of a pair of z=4.25 
quasars from the sloan digital sky 
survey 
(13) the sloan digital sky survey: 
technical summary 
(12) the discovery of a luminous 
z=5.80 quasar from the sloan digital 
sky survey 
(11) five high-redshift quasars 
discovered in commissioning 
imaging data of the sloan digital sky 
survey 

7.25  survey 
7.08  sky 
6.59  sloan 
6.59  digital 
3.24  quasars 

SDSS 
discoveries
: high-
redshift 
quasar 

8 23 (16.91)  
hierarchical neutrino 
masse 
(12.36)  
cosmic statistic 
(11.95)  
redshift-space 
correlation function  

(4) 
redshift-
space 
distortion 

(80.45)  
mission;  
(69.36)  
quasar 

(68)  
luminosity 
function 

(6) the gravitational lensing in 
redshift-space correlation functions 
of galaxies and quasars 
(4) cosmic statistics of statistics 
(4) large-scale structure, the cosmic 
microwave background and 
primordial non-gaussianity 
(4)redshift-space distortions of the 
power spectrum of cosmological 
objects on a light cone: explicit 
formulations and theoretical 
implications 

2.65  sky 
2.40  survey 
2.15  sloan 
2.15  digital 
1.09  
microwave 

Redshift-
space 
correlation 
functions 

7 22 (10.3)  
sloan digital sky 
survey 
(9.59)  
early sloan digital 
sky survey data 
 (9.59)  
merged catalog 
(7.97)  
galaxy cluster  

(2) 
background 
qso 

(26.67) 
cosmology 
(25.48)  
stars 

(16)  
emission 

(4) a merged catalog of clusters of 
galaxies from early sloan digital sky 
survey data 
(4) clustering and large-scale 
structure with the sloan digital sky 
survey 
(3) properties of galaxy clusters: 
mass and correlation functions 

3.65  survey 
3.08  sky 
3.08  sloan 
3.08  digital 
1.39  early 

Galaxy 
clusters in 
SDSS 

9 14 (17.58) 
sloan digital sky 
survey 
(16.3) 
commissioning data 

(2) 
field 
methane 
dwarf 

(42.37)  
data release 
(42.37) 
 release 

(17)  
survey 
commission
ing data 

(3) five high-redshift quasars 
discovered in commissioning 
imaging data of the sloan digital sky 
survey 
(3) simulation of stellar objects in 

4.58  survey 
4.40  sky 
3.81  sloan 
3.81  digital 
1.87  

SDSS 
discoveries
: field 
metane 
dwarf 
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(12.26) 
sky survey 
(11.95) 
field methane 
(11.93) 
high-redshift quasar  

sdss color space 
(3) the discovery of a second field 
methane brown dwarf from sloan 
digital sky survey commissioning 
data 
(3) the sloan digital sky survey: 
technical summary 
(3) topology from the simulated 
sloan digital sky survey 

commissioning 

3 13 (185.97)  
generating color 
(34)  
existing catalog data  

(11) 
existing 
catalog data 

(249.73) 
cosmology 
(208.33)  
cluster 

(121) 
gravitationa
l lensing 

(11) generating colors and k-
corrections from existing catalog 
data 
(2) topology from the simulated 
sloan digital sky survey 
(1) weak lensing with sloan digital 
sky survey commissioning data: the 
galaxy-mass correlation function to 
1 h(-l) mpc 

-0.85  data 
-1.40  digital 
-1.40  sky 
-1.40  sloan 
-1.40  survey 

Generating 
colors 

5 12 (152.16) 
internal velocity 
(27.82)  
mass distribution 
(27.82)  
cosmogonic model  

(9) 
internal 
velocity 

(33.14)  
cluster 
(28.41) 
clusters 

(17)  
galaxies : 
clusters : 
general 

(9) internal velocity and mass 
distributions in simulated clusters of 
galaxies for a variety of cosmogonic 
models 
(2) time evolution of galaxy 
formation and bias in cosmological 
simulations 
(1) intrinsic correlation of galaxy 
shapes: implications for weak 
lensing measurements 
(1) topology from the simulated 
sloan digital sky survey 

0.00  lensing 
0.00  time 
0.00  
cosmological 
0.00  
implications 
0.00  
simulations 

Cosmogon
y 

18 12 (118.35)  
first survey 
(21.64)  
radio sky  

(1) 
sdss 
j094857 

(11.99) 
cosmology:ob
servations 
(9.96)  
cosmic virial 
theorem 

(5)  
bias 

(7) the first survey - faint images of 
the radio sky at 20 centimeters 
(2) a survey of surveys 
(1) 4c+01.30: an x-shaped radio 
source with a quasar nucleus 
(1) sdss j094857.3+002225: a very 
radio loud, narrow-line quasar with 
relativistic jets? 
(1) using galaxy redshift surveys to 
detect gravitationally lensed quasars 

-0.01  redshift 
-0.01  lensed 
-0.01  detect 
-0.01  
gravitationally    
-0.01  galaxy 

Sky 
surveys 

2 11 (28.77)  
cosmic string 
(15.46)  
gravitational lensing 
signature 
(15.46)  
long cosmic string 

(1) 
cosmologic
al 
constraint 

(7.19)  
reference 
systems 
(3.9)  
methods, data 
analysis 

(3)  
reference 
systems 

(5) gravitational lensing signature of 
long cosmic strings 
(5) observing long cosmic strings 
through gravitational lensing 
(2) bounds on cosmic strings from 
wmap and sdss 

1.73  
gravitational 
1.58  lensing 
1.54  strings 
1.54  cosmic 
1.28  long 

Cosmic 
string 

14 10 (37.86)  
brown dwarf  
(30.91)  
optical spectra 
(27.82)  
cool brown dwarf  

(26) 
sloan 
digital sky 
survey 

(22.43) 
cosmology 
(18.03)  
galaxies 

(22)  
large-scale 
structure of 
universe 

(10) the discovery of a second field 
methane brown dwarf from sloan 
digital sky survey commissioning 
data 
(10) the near-infrared and optical 
spectra of methane dwarfs and 
brown dwarfs 
(9) an improved red spectrum of the 
methane or t dwarf sdss 1624+0029: 
the role of the alkali metals 
(9) near-infrared spectroscopy of 
the cool brown dwarf, sdss 1624+00 

3.08  sky 
3.08  survey 
2.58  sloan 
2.58  digital 
1.01  dwarfs 

Methane 
dwarfs and 
brown 
dwarfs 

11 9 (8.49)  
sloan digital sky 
survey 
(6.18)  
high-excitation co 
(6.18)  
iron emission 
(6.18)  
10-mas scale 
(6.18)  
radio structure 
(6.18) 
 ionization state 
(6.18)  

(3) 
dust 
emission 

(107.59)  
dark energy 
(99.63)  
data release 

(32)  
universe 

(2) a survey of z > 5.8 quasars in the 
sloan digital sky survey. i. 
discovery of three new quasars and 
the spatial density of luminous 
quasars at z similar to 6 
(2) are two z similar to 6 quasars 
gravitationally lensed? 
(2) dust emission from the most 
distant quasars 
(2) gemini-south plus flamingos 
demonstration science: near-
infrared spectroscopy of the z=5.77 
quasar sdss j083643.85+005453.3 
(2) high-excitation co in a quasar 

3.60  quasars 
3.43  survey 
3.31  sloan 
3.31  digital 
3.31  sky 

SDSS 
discoveries
: most 
distant 
quasars 
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distant quasar 
(6.18) 
distant radio-
detected quasar 

host galaxy at z=6.42 

 
We can make the following observations. The tf*idf selection is often characterized by high-
frequency and generic terms, but its power for differentiating clusters is relatively low. The 
log-likelihood selection is more useful for differentiating clusters, although some terms may 
be less representative than the tf*idf selection. The LSA-based selection appears to echo the 
tf*idf selection. Titles appear to be a better source than index terms for the purpose of labeling 
clusters because index terms tend to be overly broad.  
Highlighting co-citation links in consecutive time slices can help analysts to better understand 
the dynamics of the field of study. For example, as shown in Figure 7, Cluster 8 was highly 
cited in 2001 by high-redshift quasar papers with a few between-cluster co-citation links 
connecting the dust emission cluster (#9). In contrast, as shown in Figure 8, co-citation links 
made in 2005 suggest that the research in 2005 was essentially connecting three previously 
isolated clusters as opposed to adding within-cluster co-citation links. Cluster 5, background 
QSO, was cocited with Cluster 10 luminous red galaxy. Cluster 5 was also cocited with 
Cluster 8 high-redshift quasar. 

Discussions and Conclusions 

We have introduced a new procedure for analyzing the impact of a co-citation network. The 
new procedure shifts the focus from cited references to citers to these references and aims to 
characterize the nature of co-citation clusters in terms of how they are cited instead of 
inferring how they ought to be cited. Furthermore, the new procedure provides a number of 
mechanisms to aid the aggregation and interpretation of the nature of a cluster and its 
relationships with its neighboring clusters. The new methodology is supported by spectral 
clustering and enhanced network visualization capabilities to differentiate densely connected 
network components. In order to aid the sense making process further, we integrate multiple 
channels for the selection of candidate labels for clusters, ranging from saliency-focused term 
selection to uniqueness-focused selection. 
 

 
Figure 7. Co-citation links made in 2001 (in red), primarily in Cluster 8 and linking to Cluster 9. 
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Figure 8. Co-citation links made in 2005 (in red) between Cluster 10 and Cluster 5. 

We are addressing some challenging methodological and practical issues. Further studies are 
needed to evaluate the new method at a deeper level. We have noticed that when our 
astronomy experts attempted to make sense of bibliographic clusters, they tend to use 
algorithmically selected terms as a starting point and find concepts at appropriate levels of 
abstraction. The final concepts they choose may not necessarily present in the original list of 
candidates. In such synthesizing processes, scientists appear to search for a match in the 
structure of their domain knowledge. If this is indeed the case, it implies that the primary 
challenge is to bridge the gap between piecemeal concepts suggested by automatically 
extracted terms and the more cohesive theoretical organization of the experts.  
Further studies are also necessary to compare with relevant methods such as clustering based 
on bibliographic coupling (Kessler, 1963; Morris, Yen, Wu, & Asnake, 2003). 
Comprehensive studies of the interrelationships between different labeling mechanisms are 
important too. For example, one may examine the positions of various labels of the same 
cluster in terms of their structural properties in a network of labels. Comparative studies with 
traditional co-citation network analysis will be valuable to provide the empirical evidence that 
may establish where the practical strengths and weaknesses of the new approach. 
In conclusion, the major contribution of our work is the introduction of a new and integrated 
procedure for analyzing and interpreting co-citation networks from the perspectives of citers. 
The new method has the potential to bridge the methodological gap between co-citation 
analysis and other citer-focused analytic methods. The method is readily applicable to a wider 
range of sense-making and analytical reasoning tasks with associative networks such as social 
networks and concept networks by cross-validating structural patterns with direct and focused 
content information. 
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CiteSpace is freely available at http://cluster.cis.drexel.edu/~cchen/citespace. Figures in this 
article are available in color at http://cluster.cis.drexel.edu/~cchen/papers/2009/issi2009/.  
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