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Abstract. Distributions of papers based on the fractional counting are 
very irregular. It can be explained by a model which may be derived under 
the assumptions that the distribution of papers ( (n))(method of normal 
counting) is a negative binomial distribution and the distribution of 
authors ((n)) (multiple authorship) is a Poisson distribution.  This model 
appears to be a much better model than the one which is derived earlier 
by Egghe and Rao under the assumption that  (n) and (n) confirm to 
Lotka’s  law. 

 
1. INTRODUCTION 
 

Distributions of articles over authors are approximated by a number of related 
models since the first publication on the frequency distribution of scientific productivity 
by A J Lotka in 1926. The following are some of the important models or distributions, 
which are discussed since then: 

 
1. Law of inverse square [9] 
2. Generalized bibliometric distributions [1] 
3. Negative binomial and as a special case, some times, geometric distribution 

[11] 
4. Cumulative advantage distribution [10] 
 
These distributions are related to a great extent – the geometric distribution is a 

special case of negative binomial distribution. The negative binomial distribution and 
also the cumulative advantage distribution may be derived from an urn model; they 
explain highly skewed data with a long tail fairly well. Further (1),  (3) and (4) are used 
primarily to analyze size-frequency data. (1) is also a special case of (2) and they are 
discussed in a number of informetric papers. In most of these studies, the number of 
publications is considered as a measure of scientific productivity. As pointed out by 
Egghe [4] and Lindsey [8], there are three methods of counting the number of 
publications. They are: 

 



 Method of total counting or normal counting – assigning every author a 
weight one for each of his or her publications during a time period, 
irrespective of whether he or she is a first author or a second author, etc. 

 Method of straight counting – assigning only the first author a weight one for 
each of his or her publications during a time period and for other authors a 
weight zero. In deriving the law of Inverse Square, Lotka adopted this method 
while collecting the data from Author Index of Chemical Abstracts and 
Auerbach’s Geschichtstafeln der Physik. 

 Method of fractional counting – assigning every author a weight 1/n in an n-
authored paper. 

 
Rousseau [13] in 1992 in his article entitled “Breakdown of the Robustness 

Property of Lotka’s Law: The Case of Adjusted Counts for Multi-authorship Attribution”, 
discussed frequency distribution of  “fractional scores” in a bibliography of Informetrics.  
He observed that fractional counting of authors does not lead to a Lotka distribution. He 
further argued that Bookstein’s robustness property of Lotka’s law breaks down in such 
cases. Bookstein pointed out that “if we would find a 1/X relation to describe 
productivity when we give a full publication to every author whose name appears on a 
paper, this will also be the case if we had assigned factional authorship instead” (2, 
p.383). This is one of the robustness properties. Ravichandra Rao [12] also studied a 
distribution of fractional scores in mathematics. His study was based on the 
bibliographical records in Math Reviews (1990.) For the appropriate groups or classes of 
fractional scores, he hypothesized that log-normal distribution fits much better than other 
distributions; however, this hypothesis was rejected when appropriate tests were applied. 
Recently, Egghe and Ravichandra Rao [5] further analyzed this data and came out with 
an extremely good model to describe distribution of fractional scores. Their paper entitled 
"Duality Revisited: Construction of Fractional Frequency Distributions based on two dual 
Lotka's Laws,” is the first attempt of this kind. They have assumed two simple Lotka 
distributions with exponent 2 – one for the number of authors with n papers (total count) 
and the other one for the number of papers with n authors. Based on the earlier 
convolution model of Egghe [4], the authors have reworked for discrete scores and 
produced a theoretical fractional frequency distribution (f(q)) with only one parameter 
which is in very close agreement with observed data, produced earlier by Rao. Egghe and 
Ravichandra Rao thus concluded that “fractional distributions are a consequence of 
Lotka’s law and are not examples of breakdowns of this famous historical law.” Further, 
they have also noticed that a Poisson distribution (for (n))  if the parameter  is chosen 
in the appropriate way is better capable of describing the distribution of fractional scores 
(the results have not been published). Thus, as a continuation of Egghe and Ravichandra 
Rao’s work, an attempt has been made here to 
 

 Identify a suitable model for distribution of papers in the field of software 
studies, as we find in many cases Lotka’s law hardly fits 

 Identify a suitable model to describe distribution of authors (distribution of 
multiple authorship!) and then 

 Identify an appropriate model to explain the distribution of fractional scores of 
authors. 

 
 
 



2. DATA COLLECTION 
 
 Data in the area of “software and related topics” were collected from the 
COMPENDEX database for the year 2000. After eliminating duplicate records, there 
were a total of 55,784 relevant records. All the three methods – total counting, straight 
counting and fractional counting – were adopted to collect the data on distribution of 
papers over authors. Further, data on distribution of authors (multiple authorship) over 
papers were also collected. The data are given in Table 1. Table 2 gives the distribution 
of papers, based on fractional counting. 
 
3. DATA ANALYSIS 
 

Lotka observed regularities in the productivity of chemists and physicists and on 
the basis of  these observations, he formulated a hypothesis that the relative frequency of 
authors publishing x articles could be explained as  
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where  is a constant.  The value of  was found to be 2 for physicists and 1.89 for 
chemists.  Since then, several formal analytical and predictive models have been 
developed for describing the phenomenon of scientific productivity [11].  Ravichandra 
Rao [11] in his article on distribution of scientific productivity and social change argued 
that the negative binomial distribution: 

  
 

 
xk qp

xk

xk
xp

!1)!1(

!2
)(




                    x = 1,2,3, … 

       0 < p, q < 1,  k > 0 
 
fits fairly well to the author productivity data.  Even in the present study, it has been 
observed that the negative binomial fits (data on author productivity) much better than 
most other distributions, such as Lotka’s distribution, Poisson, lognormal, logarithmic 
series, geometric, etc.  The negative binomial distribution, on fitting, gives a minimum 
chi-square value. The results of fitting the negative binomial distribution is shown in 
Table 1 (Total counting).  Further, the authors have also observed in this study that the 
negative binomial distribution fits better than most of the other well-known distributions, 
to the data on author productivity, based on straight counting.  Table 1 shows the results.   
An attempt has also been made to identify a suitable distribution to the distribution of 
multiple authorship. It has been observed that the Poisson distribution (x is modified such 
that x = 1,2,3,….) 
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fits much better than any other well known probability distribution.  Table 1 gives the 
results. 
 
4. DISTRIBUTION OF FRACTIONAL PAPERS 
 
 Egghe and Ravichandra Rao [5] have derived a theoretical model for the 
fractional frequency distribution f(q) (discrete case) from two  dual Lotka’s laws.  They 
have derived the required formula  for f(q), q > 0, for different cases: 
 



1) case 1:  i = 2, allowing an author score of 1/2 or 1 in one  paper 
2) case 2:  i =3, allowing an author score of 1/3,1/2 or 1 in one paper 
3) case 3:  i =4, allowing an author score of 1/4, 1/3,1/2 or 1 in one paper 
4) case 4:  i = 5, allowing an author score of 1/5 1/4, 1/3,1/2 or 1 in one paper 

For each case i, fractional scores of 1/j for j larger than or greater than i are set to be 1/i 
for reasons of simplicity. The case 1 for i = 2 is the most simple one and the relevant 
formulae are: 
 
f(1/2) = g1(1/2)  (1) = (1-f1(1))  (1) 
f(1) = g1(1)  (1) + ( g1(1/2))2  (2) = f1(1)  (1) + (1-f1(1))2  (2) 
f(3/2) = 2g1(1/2) g1(1)  (2) + ( g1(1/2))3  (3) = 2(1-f1(1)) f1(1) (2) + (1-f1(1))3   (3) 
f(2) = (g1(1))2  (2) + 3( g1(1/2))2  g1(1)  (3) + ( g1(1/2))4  (4) 
       = (f1(1))2 (2) +3(1- f1(1))2 f1(1)  (3)  + (1-f1(1))4  (4) 
 
g1(.) is derived using f1(.) and  (.) in each of the cases discussed above  as in Egghe and 
Rao[4]. Formulae for cases i = 3 & 4 are given by Egghe and Ravichandra Rao [5].  
Formulae for case i = 5 are too many and run into several pages and therefore they are not 
published so far.  They are however available with the authors, if required.  In the 
formula for f(q),   (n) is the distribution of papers over authors (Lotka’s law), and 
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where (z) is the distribution of papers with z authors;  denotes the average number of 
authors per paper; thus f1(z) denotes the fraction of  authors with fractional score z in one 
paper.  Using the above formula, Egghe and Ravichandra Rao [5] under the assumption 
that both (n) and  (n) confirm to a Lotka’s law, computed probabilities (f1(q)) for cases 
i = 2,3,4 and 5.  As noted in their article the results were excellent, particularly (for the 
case i = 5.) 
 

In this paper a similar attempt is made and under the assumption that both (n) 
and  (n) confirm to a Lotka’s law, to compute f(q) and it is not giving a good result 
(Table 3, Cols 4 & 8.)  As may be observed from Table 1, both (n) and  (n) do not 
confirm to a Lotka’s Law and this may be a reason for the bad result of f(q). On the other 
hand, we have observed that Poisson distribution is a close approximation to (n).   
Therefore an attempt was made to compute f(q), under the assumption that (n) follows a 
Poisson distribution and  (n) confirms to Lotka’s Law; the results are given in Tables 3 
(Cols 4 & 9) for case i=4. Figures 1-4 give the graphs for theoretical and empirical values 
for cases i = 2 to 5. However, as may be observed in Figures 1-4, the results are not 
satisfactory. The moments method is used to estimate the parameters, while fitting the 
distribution. 
 

Ravichandra Rao [11] argued that the negative binomial distribution describes a 
pattern of scientific productivity under the success breeds-success condition in a wide 
variety of social changes.  Further even in the present study, authors have observed that 
the negative binomial distribution fits (n) fairly well.  Therefore, an attempt has been 
made here to compute f(q) for cases i = 2,3,4 and 5 under the assumption that (n) and  
(n) follow Poisson and negative binomial distributions respectively. The values of  f(q) 



are very close to the experimental values and the results are excellent.  This observation 
is based on Figures 1-4. The theoretical and observed values for case i = 4 is given in 
Table 3 (Cols 5 & 10.)  Figures 1-4 give the graphs for theoretical and empirical values 
for cases i = 2 to 5.  The g1(.) were accordingly derived  for cases i =2 to 5 and they are as 
follows: 
 
Case 1: i=2 
 

This is a simple case. In this case, an author receives a score 1, if he / she is an 
author in a single authored paper. If he/she is an author in an multi-authored paper, the 
author receives a score 1/2. 

g1(1) = f1(1) = e- / ( + 1) and g1(1/2) = 1-f1(1) 
 
Case 2: i=3 
 

In this case, an author receives a score 1, if he / she is an author in a single 
authored paper. The author receives a score of ½ if he / she is an author in a two-authored 
paper. A score of 1/3 is assigned if he / she is an author in a j-authored paper for all j  3. 

 
g1(1) = f1(1) = e- / ( + 1), g1(1/2) = 2  g1(1) and g1(1/3)  = 1- (f1(1) + f1(1/2)) 
         = 1- e- / ( + 1){1+2} = 1- g1(1) (1+2) 

Case 3: i=4 
 

In this case, an author receives a score 1, if he / she is an author in a single 
authored paper. The author receives a score of ½ if he / she is an author in a two-authored 
paper. A score of 1/3 is assigned if he / she is an author in a 3-authored paper and a score 
of ¼ is assigned if he / she is a j-authored paper for all j  4. 

g1(1) = f1(1) = e- / ( + 1), g1(1/2) = 2  g1(1), g1(1/3) = 3 (/2) g1(1/2)  
         = 1.52 g1(1) and g1(1/4) =1-g1(1) (1+2+1.52) 

Case 4: i=5 
 

As in cases 1,2 and 3 the author receives a score 1/j, if he / she is an author in a j-
authored paper (j  5) and the author receives a score of 1/5 if he / she is an author in a j-
authored paper (j  5 ). 

g1(1) = f1(1) = e- / ( + 1), g1(1/2) = 2  g1(1), g1(1/3) =1.52 g1(1), g1(1/4) 
         = (2/3) g1(1/2) = (2/3) 3 g1(1) and g1(1/5) =1-g1(1) (1+2+1.52+(2/3) 3) 

 
In all the above cases (i = 2,3,4 and 5), fractional scores of 1/j for j larger than or 

equal to i , are set to be 1/i for reasons of manageability of the calculations. The larger i, 
the better the scoring system. Also g1(1) is derived using  f1(1).  g1(1/2), g1(1/3), g1(1/4) 
and g1(1/5) are functions of  g1(1). g1(.) refers to the author distribution of fractional 
scores in one paper. 
 
 
 
 



5 .  CONCLUSION 
 

In a working hypothesis that the population is a mixture of individuals with 
different degrees of accident proneness, represented by different  in a Poisson 
distribution and if suppose that in the population the distribution of  is of the Gamma 
form [6,7], then the variable X follows a negative binomial distribution.  In the case of 
author productivity, each individual author has different capabilities to publish an article 
(represented by different  -- similar to that of accident proneness.) Further, as has been 
observed in the literature earlier [5], and as observed in this article (based on total 
counting), it has been hypothesized that the distribution of papers over authors confirm to 
a negative binomial distribution.  Since (n) closely confirms to a Poisson distribution 
and (n) confirms to a negative binomial distribution (-- a compound Poisson 
distribution),  in this paper it is further conjectured that f(q) belongs to a family of 
Poisson distribution and it explains the scientific productivity of author, to a great extent. 
The values of Kolmogorov statistics (Dmax) for Lotka-Lotka, Poisson-Lotka and Neg. 
Bin.- Poisson cases are 0.330204, 0.26399, and 0.019059 respectively. It undoubtedly 
leads us to conclude that f(q) can reasonably be  predicted under the assumption that  
(n) follows Negative binomial and (n) follows Poisson distribution .                
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Table 1.   Author Productivity in the area of Software Studies 
 

No. of 
Papers 

No. of 
Authors 
( Total 
Counting) 

Theoretical 
Values (neg.  
binomial) 

No. of 
Authors 
(Straight 
Counting) 

Theoretical 
Values (neg.  
binomial) 

No. of 
Authors 

No. of 
Papers 

Theoretical 
Values 
(Poisson) 

N (n)  (n)  y (n)  
1 110503 111787 41071 41451 1 8820 8940 
2 14027 11831 4742 4081 2 18555 16369 
3 3223 3665 1012 1126 3 14577 14985 
4 1085 1385 254 378 4 7536 9146 
5 414 570 96 138 5 3320 4186 
6 195 246 15 53 6 1429 1533 
7 110 110 14 21 7 681 468 
8 45 50 7 8 8 356 122 
9 26 23 1 3 9 211 28 
10 15 11 4 1 10 118 6 
11 17 5 2 1 11 68 1 
12 9 2 2 0 12 37  
13 8 1 3  13 30  
14 4 1 -  14 25  
15 2  -  15 21  
16 2  -     
17 1  -     
18 1  -     
22 1  -     
24 1  1     

Total 129689  47268   55784  
Mean 1.2177  1.1802   2.8309  

Variance 0.4482  0.3297   2.4288  
St. dev. 0.6695  0.5742   1.5585  

p  0.4862  0.5464   - 
q  0.5138  0.4536   - 
k  0.2060  0.2170   - 
  -  -   1.8309 

Dmax  0.0036  0.0082   0.0370 
D  0.0038  0.0063   0.0058 

 
Table 2.  Distribution of Papers (Fractional Method) 

 
Fraction 
of 
Papers 

No. of 
Authors 

Z f(z) 
0.0667 219 
0.0714 250 
0.0769 284 
0.0833 333 
0.0909 586 

0.1 875
0.1111 1377

0.125 2121
0.1334 12
0.1381 14
0.1428 1
0.1429 3396
0.1436 7
0.1483 2

0.15 2
Fraction 
of 
Papers 

No. of 
Authors

Z f(z)
0.1538 7
0.1547 8
0.1623 1
0.1667 6144

0.1678 7 
0.1714 9 
0.1742 2 
0.1769 9 
0.1778 8 
0.1818 3 
0.1825 8 
0.1909 12 
0.1917 2 

0.1944 11
0.1964 3

Fraction 
of 
Papers 

No. of 
Authors

Z f(z)
0.2 11555

0.2019 7
0.202 5



0.2083 8 
0.2096 3 
0.2111 8 
0.2143 9 
0.2159 4 
0.2198 2 
0.2222 41 

0.225 8 
0.2269 1 
0.2334 3 
0.2338 9 
0.2361 30 

Fraction 
of 
Papers 

No. of 
Authors 

Z f(z) 
0.2429 9 
0.2436 6 
0.2456 2 

0.25 22197 
0.254 44 

0.2667 21 
0.2679 58 
0.2763 1 
0.2769 10 
0.2778 49 
0.2833 8 
0.2858 116 
0.2909 17 
0.2917 65 
0.2967 3 

Fraction 
of 
Papers 

No. of 
Authors 

Z f(z) 
0.2976 4 

0.3 26 
0.3028 1 
0.3096 152 
0.3103 2 
0.3107 2 
0.3111 40 
0.3194 3 

0.325 80 
0.3269 1 
0.3333 29695 
0.3334 213 
0.3338 5 
0.3409 1 
0.3429 122 

Fraction 
of 
Papers 

No. of 
Authors 

Z f(z) 
0.3445 3 

0.35 2
0.3512 1
0.3572 5
0.3576 1
0.3651 1
0.3667 363
0.3678 1
0.3767 2

0.379 3
0.3917 2
0.3929 8
0.3936 2
0.3969 2
0.4005 1

0.402 5
0.4028 1
0.4047 4
0.4083 1
0.4102 6
0.4108 8
0.4166 17
0.4167 3
0.4207 1
0.4222 1
0.4242 24

0.425 1
0.4287 3
0.4333 40
0.4334 4
0.4338 2
0.4346 5
0.4361 1
0.4444 65
0.4445 5

0.45 6
0.4525 11

0.454 2
0.4576 2
0.4583 105
0.4584 8
0.4667 3
0.4679 7
0.4714 2
0.4722 1
0.4762 158
0.4763 16
0.4778 6
0.4858 8
0.4901 1
0.4909 1

Fraction 
of 
Papers 

No. of 
Authors

Z f(z)
0.4917 17

0.5 27259
0.5001 25
0.5011 1
0.5075 1
0.5111 3
0.5167 1
0.5222 1
0.5242 1

0.525 15
0.5255 1
0.5277 2
0.5333 896
0.5334 41
0.5429 21
0.5444 1
0.5448 1
0.5525 3
0.5531 1
0.5537 2
0.5555 3
0.5596 1
0.5603 1
0.5636 1
0.5667 44
0.5671 1
0.5694 3
0.5714 1
0.5716 1
0.5762 1
0.5775 3
0.5833 2
0.5858 2
0.5873 6
0.5874 1
0.5909 1
0.5969 1

0.6 73
0.6012 1
0.6013 1

0.602 1
0.6102 1
0.6108 1
0.6111 6
0.6191 12
0.6192 1
0.6198 1
0.6222 1
0.6242 4
0.6243 1

0.625 13
Fraction 
of 
Papers 

No. of 
Authors

Z f(z)
0.6251 1

0.6262 1 
0.63 1 

0.6334 2 
0.6338 1 
0.6346 1 
0.6429 14 

0.643 5 
0.6444 7 
0.6445 1 
0.6449 1 

0.65 1 
0.6525 2 
0.6531 1 
0.6583 10 
0.6648 1 
0.6666 3057 
0.6667 25 
0.6668 2 
0.6679 4 
0.6762 22 
0.6763 6 
0.6778 4 
0.6917 3 
0.6922 1 
0.6944 1 

0.7 62 
0.7001 2 
0.7025 1 
0.7096 1 
0.7111 1 
0.7333 108 
0.7334 4 
0.7353 2 
0.7401 1 
0.7429 5 
0.7499 4 

0.75 1713 
0.7525 3 
0.7575 2 

0.762 2 
0.7666 4 
0.7667 4 
0.7679 3 
0.7714 1 
0.7762 1 
0.7777 10 
0.7778 1 
0.7833 1 
0.7858 3 
0.7916 11 

Fraction 
of 
Papers 

No. of 
Authors 

Z f(z) 
0.8 17 

0.8095 40
0.8096 3
0.8131 1
0.8192 1
0.8194 1

0.825 2
0.83 1

0.8333 64
0.8339 1
0.8346 3
0.8353 1
0.8429 5

0.843 1
0.8444 3
0.8525 1
0.8583 5
0.8666 183
0.8667 7
0.8762 3
0.8825 1
0.8858 1

0.887 3
0.8928 2
0.8936 1

0.9 13
0.9001 1
0.9095 1
0.9166 2
0.9198 1
0.9262 1
0.9333 10
0.9345 1
0.9361 1
0.9435 1
0.9445 1
0.9524 2
0.9583 3
0.9666 3
0.9667 1
0.9762 3
0.9777 2
0.9916 1
0.9917 1
0.9999 581

1 9318
1.0095 2
1.0111 1
1.0263 1
1.0333 14
1.0334 1

Fraction 
of 
Papers 

No. of 
Authors

Z f(z)
1.0429 1



1.043 1 
1.0493 1 
1.0583 1 
1.0584 1 
1.0666 36 
1.0667 1 
1.0714 1 
1.0769 1 
1.0873 1 
1.0909 6 
1.0953 1 
1.0999 1 

1.1 8 
1.1012 1 
1.1028 1 

1.111 1 
1.1111 10 
1.1191 1 
1.1192 1 
1.1242 1 
1.1249 2 

1.125 9 
1.1333 4 
1.1361 1 
1.1428 7 
1.1429 22 
1.1525 1 
1.1666 16 
1.1667 36 
1.1762 1 
1.1777 2 

1.188 1 
1.1916 3 
1.1999 53 

1.2 82 
1.2096 1 
1.2221 1 

1.225 1 
1.2251 1 
1.2333 5 
1.2382 1 
1.2435 1 
1.2499 1 

1.25 344 
1.2539 1 
1.2611 1 
1.2666 4 
1.2667 3 
1.2713 1 
1.2762 1 

Fraction 
of 
Papers 

No. of 
Authors 

Z f(z) 
1.2909 1 

1.2917 1
1.3 1

1.3095 1
1.3096 2
1.3194 1
1.3249 2

1.325 1
1.3332 164
1.3333 428
1.3334 2
1.3372 1
1.3428 2
1.3429 4
1.3666 2
1.3667 6
1.3858 1
1.3916 1
1.3999 12

1.4 9
1.4012 1
1.4019 1
1.4077 1
1.4095 1
1.4123 1
1.4241 1
1.4242 1
1.4334 2
1.4443 1
1.4444 1
1.4582 1
1.4583 4
1.4666 3
1.4667 1
1.4761 5
1.4762 3
1.4778 1
1.4857 2
1.4999 8

1.5 677
1.5095 1
1.5249 1
1.5332 17

  
  
  
  
  
  
  
  
Fraction 
of 
Papers 

No. of 
Authors

Z f(z) 
1.5333 18

1.5666 2
1.5715 1
1.5789 1
1.5999 4

1.6 3
1.6095 1

1.611 1
1.6111 1
1.6167 1

1.625 1
1.6333 2
1.6665 62
1.6666 75
1.6667 1
1.6762 1
1.6999 3

1.7 1
1.7332 7
1.7333 5

1.738 1
1.75 113

1.7666 1
1.7776 1
1.7777 1
1.7789 1
1.8094 1
1.8095 3
1.8249 1
1.8333 2
1.8428 1
1.8582 1
1.8665 16
1.8666 10

1.9 1
1.9332 2
1.9691 1
1.9762 1
1.9776 1
1.9998 20
1.9999 27

2 604
2.0095 1

  
  
  
  
  
  
  
  
Fraction 
of 
Papers 

No. of 
Authors

Z f(z) 
2.0332 5

2.0334 1 
2.0665 4 
2.0666 2 
2.0667 1 

2.125 1 
2.1333 1 
2.1428 1 
2.1429 1 
2.1582 1 
2.1665 4 
2.1666 2 
2.1667 3 
2.1679 1 
2.1777 1 
2.1916 1 
2.1998 7 
2.1999 3 

2.2 5 
2.25 49 

2.2679 1 
2.2917 1 

2.311 1 
2.3111 1 
2.3331 10 
2.3332 9 
2.3333 42 
2.3998 3 
2.3999 2 

2.4 2 
2.4242 1 
2.4581 1 
2.4678 1 
2.4762 1 
2.4999 1 

2.5 85 
2.5331 1 
2.5332 2 

2.6 1 
2.6664 4 
2.6665 2 
2.6666 10 

2.676 1 
 

  
  
  
  
  
  
  
Fraction 
of 
Papers 

No. of 
Authors 

Z f(z) 
2.7331 1 

2.7333 1
2.75 25

2.7667 2
2.8332 1
2.8664 2
2.8666 1
2.9094 1
2.9666 1
2.9667 2

2.976 1
2.9998 1
2.9999 2

3 105
3.0343 1
3.0666 1
3.0833 1
3.0909 1
3.1012 1
3.1429 1
3.1997 4
3.1998 1

3.2 2
3.25 9

3.2664 1
3.333 1

3.3331 1
3.3332 1
3.3333 7
3.4583 1

3.5 21
3.533 1

3.5331 1
3.5333 1
3.5998 1
3.6663 1
3.6666 3

3.733 1
3.75 7

3.8663 1
3.8759 1
3.9999 3

4 30

  
  
  
  
  
Fraction 
of 
Papers 

No. of 
Authors

Z f(z) 
4.0094 1



4.25 6 
4.3333 2 
4.3667 1 

4.5 9 
4.5331 1 
4.5332 1 
4.6666 1 

5 15 
5.25 3 

5.2759 1 
5.5 4 

5.75 2
6 5

6.5 1
6.5327 1

7 6
8 4

8.3333 1
9 4

10 2
11 1
12 2

13 2  
 
 
 
 
 
 
 
 
 
 

 
Table 3. Values of f(q) for case i = 4 

q Obs. 
Data f(q) 

Lotka- 
Lotka 

Poisson-
Lotka

Neg. Bin.-
Poisson

1 2 3 4 5 
1/4 0.385931 0.368761 0.274408 0.389119
1/3 0.236928 0.04348 0.173053 0.245394
1/2 0.227992 0.121144 0.156991 0.197279
7/12 0.001689 0.013188 0.039058 0.023426
2/3 0.025014 0.000777 0.012316 0.007387
3/4 0.014535 0.034859 0.034657 0.019659
5/6 0.002637 0.007666 0.029692 0.015676
11/12 0.000378 0.000629 0.007413 0.003101
1 0.076568 0.145334 0.051085 0.056745
13/12 0.000679 0.004313 0.014776 0.005636
7/6 0.001766 0.00054 0.007169 0.002483

q Obs. 
Data f(q)

Lotka- 
Lotka 

Poisson-
Lotka 

Neg. Bin.-
Poisson

6 7 8 9 10 
5/4 0.002853 0.046649 0.016635 0.007646
4/3 0.004758 0.008132 0.02121 0.007721
17/12 0.00027 0.000429 0.00527 0.001301
3/2 0.005714 0.023194 0.009779 0.003478
19/12 0.000131 0.005431 0.009007 0.002546
5/3 0.001118 0.000559 0.005119 0.001169
7/4 0.001002 0.014984 0.006718 0.001785
11/6 0.00027 0.001834 0.006214 0.001424
23/12 2.31E-05 0.000563 0.004138 0.000687
2 0.005097 0.014803 0.005747 0.001373

Total 0.99535 0.85727 0.890454 0.995034

Note: In Table 3, Lotka-Lotka means, both (n) and (n) follow Lotka’s law.  
Poisson-Lotka means, (n) and (n) follows Poisson and Lotka’s distributions 
respectively. Neg. bin– Poisson means (n) and (n) follow Negative binomial and 
Poisson distributions respectively.  
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